210 resultados para POLYCHLORINATED BIPHENYLS
Resumo:
Adipose tissue was sampled from the western Hudson Bay (WHB) subpopulation of polar bears at intervals from 1991 to 2007 to examine temporal trends of PCB and OCP levels both on an individual and sum-contaminant basis. We also determined levels and temporal trends of emerging polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), polybrominated biphenyls (PBBs) and other current-use brominated flame retardants. Over the 17-year period, sum DDT (and p,p'-DDE, p,p'-DDD, p,p'-DDT) decreased (-8.4%/year); alpha-hexachlorocyclohexane (alpha-HCH) decreased (-11%/year); beta-HCH increased ( + 8.3%/year); and sum PCB and sum chlordane (CHL), both contaminants at highest concentrations in all years (>1 ppm), showed no distinct trends even when compared to previous data for this subpopulation dating back to 1968. Some of the less persistent PCB congeners decreased significantly (-1.6%/year to -6.3%/year), whereas CB153 levels tended to increase (+ 3.3%/year). Parent CHLs (c-nonachlor, t-nonachlor) declined, whereas non-monotonic trends were detected for metabolites (heptachlor epoxide, oxychlordane). sum chlorobenzene, octachlorostyrene, sum mirex, sum MeSO2-PCB and dieldrin did not significantly change. Increasing sum PBDE levels (+13%/year) matched increases in the four consistently detected congeners, BDE47, BDE99, BDE100 and BDE153. Although no trend was observed, total-(alpha)-HBCD was only detected post-2000. Levels of the highest concentration brominated contaminant, BB153, showed no temporal change. As long-term ecosystem changes affecting contaminant levels may also affect contaminant patterns, we examined the influence of year (i.e., aging or "weathering" of the contaminant pattern), dietary tracers (carbon stable isotope ratios, fatty acid patterns) and biological (age/sex) group on congener/metabolite profiles. Patterns of PCBs, CHLs and PBDEs were correlated with dietary tracers and biological group, but only PCB and CHL patterns were correlated with year. DDT patterns were not associated with any explanatory variables, possibly related to local DDT sources. Contaminant pattern trends may be useful in distinguishing the possible role of ecological/diet changes on contaminant burdens from expected dynamics due to atmospheric sources and weathering.
Resumo:
Recent investigations have demonstrated the presence of an unidentified source of polychlorinated dibenzo-p-dioxins (PCDDs) in the coastal zone of Queensland (Australia). The present study provides new information on the possible PCDD sources and their temporal input to this environment. Two estuarine sediment cores were collected in northern Queensland for which radiochemical chronologies were established. Core sections from different depositional ages, up to three centuries, have been analyzed for 2,3,7,8-substituted PCDDs and polychlorinated dibenzofurans (PCDFs). Variations of PCDD concentrations in the sediment cores over several centuries of depositional history were relatively small, and elevated PCDD levels were still present in sediment slices from the early 17th century. PCDD/F isomer patterns and congener profiles in sediments deposited during the last 350 years were almost identical and correlated well to the characteristic profiles observed in surface sediments and soils from the entire Queensland coastline. Profiles were dominated by higher chlorinated PCDDs, in particular octachlorodibenzodioxin (OCDD), whereas PCDF concentrations were below or near the limit of detection. These results indicate the presence of a PCDD source prior to industrialization and production of commercial organochlorine products. Further, the present study demonstrates that PCDD input patterns have been similar along an extensive but localized area over at least several centuries, contributing relatively high concentrations of PCDDs to the coastal system of Queensland.
Resumo:
Polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) concentrations were measured in sediment and seagrass from five locations in or adjacent to the Great Barrier Reef Marine Park. A full spectrum of Cl(5-8)DDs were present in all samples and, in particular, elevated levels of Cl8DD were found. PCDFs could not be quantified in any samples. The PCDD concentrations ranged over two orders of magnitude between sites, and there was a good correlation between sediment and seagrass levels. There were large quantities of sediment present on the seagrass (20-62% on a dry wt. basis), and it was concluded that this was a primary source of the PCDDs in the seagrass samples. The PCDD levels in the seagrass samples were compared with the levels in the tissue of three dugongs stranded in the same region. The relative accumulation of the 2,3,7,8-substituted PCDD congeners in the dugongs decreased by over two orders of magnitude with increasing degree of chlorination. This was attributed to the reduced absorption of the higher chlorinated congeners in the digestive tract, a behaviour that has been observed in other mammals such as domestic cows. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Several unknown, abundant brominated compounds (BCs) were recently detected in the blubber of dolphins and other marine mammals from Queensland (northeast Australia). The BC were interpreted as potential natural products due to the lack of anthropogenic sources for these compounds. This study investigated whether some of the BCs accumulated by diverse marine mammal species are identical with natural BCs previously isolated from sponges (Dysidea sp.) living in the same habitat. Isolates from sponges and mollusks (Asteronotus cespitosus) were compared with the signals detected in the mammals' tissue. Mass spectra and gas chromatography retention times on four different capillary columns of the isolates from sponges and mammals were identical in all respects. This proves that the chemical name of the compound previously labeled BC-2 is 4,6-dibromo-2-(2'-dibromo)phenoxyanisole and that the chemical name of BC-11 is 3,5-dibromo-2-(3',5'-dibromo-2'-methoxy)phenoxyanisole. Using a quantitative reference solution of BC-2, we established that the concentrations of the brominated metabolies found in the marine mammals are frequently >1 mg/kg. The highest concentration (3.8 mg/kg), found in a sample of pygmy sperm whale (Kogia breviceps), indicates that BC-2 is a bioaccumulative, natural organohalogen compound. This is supported by the concentrations of the BCs in our samples being equal to the highest concentrations of anthropogenic BCs in any environmental sample. The quantitative determination of BC-2 in blubber of marine mammals from Africa and the Antarctic suggests that BC-2 is wide-spread. These results are direct proof that marine biota can produce persistent organic chemicals that accumulate to substantial concentrations in higher trophic organisms.
Resumo:
Recent findings of elevated PCDDs from an unknown source in the coastal marine environment of Queensland, Australia has instigated further investigations into the distribution of, and environments associated with the PCDD contamination. This study presents data for OCDD concentrations in the coastal, mountainous and inland environment of Queensland. Additionally, full 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins and dibenzofuran (PCDD/F) profiles from different land-use types and environments in the coastal region were analysed. Distinct east-west gradients were detected in topsoil collected from various bushland regions with elevated OCDD concentrations confined to the coastal region. However, PCDD/F results from topsoil and river sediments collected in the Queensland coastal region suggest that elevated OCDD concentrations cannot be attributed to any of the environments, land-use or industry types investigated. PCDD/F congener profiles from select samples were remarkably similar to those previously described in marine sediments collected along the entire Queensland coastline. In addition, kaolinite clay samples from Queensland exhibited elevated OCDD concentrations, and PCDD/F profiles in these samples were similar to those detected in kaolinite clays elsewhere. Natural formation processes have been hypothesised as the source of elevated PCDDs in Queensland and other locations, where similar PCDD/F profiles and the general lack of anthropogenic sources are evident. This study presents additional data supporting this hypothesis and provides further information that may assist in the identification of the processes involved in the natural formation of PCDDs. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Forest fires are suggested as a potential and significant source of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), even though no studies to date provide sufficient evidence to confirm forest fires as a source of PCDD/Fs. Recent investigations in Gueensland, Australia have identified a widespread contamination of PCDDs (in particular OND) in soils and sediments in the coastal region from an unknown source of PCDD/Fs. Queensland is predominately rural; it has few known anthropogenic sources of PCDD/Fs, whereas forest fires are a frequent occurrence. This study was conducted to assess forest fires as a potential source of the unknown PCDD/F contamination in Queensland. A combustion experiment was designed to assess the overall mass of PCDD/Fs before and after a simulated forest fire. The results from this study did not identify an increase in Sigma-PCDD/Fs or OCDD after the combustion process. However, specific non-2,3,7,8 substituted lower chlorinated PCDD/Fs were elevated after the combustion process, suggesting formation from a precursor. The results from this study indicate that forest fires are unlikely to be the source of the unknown PCDD contamination in Gueensland, rather they are a key mechanism for the redistribution of PCDD/Fs from existing sources and precursors.
Resumo:
Potential risks of a secondary formation of polychlorinated dibenzodioxins/furans (PCDD/Fs) were assessed for two cordierite-based, wall-through diesel particulate filters (DPFs) for which soot combustion was either catalyzed with an iron- or a copper-based fuel additive. A heavy duty diesel engine was used as test platform, applying the eight-stage ISO 8178/4 C1 cycle. DPF applications neither affected the engine performance, nor did they increase NO, NO2, CO, and CO2 emissions. The latter is a metric for fuel consumption. THC emissions decreased by about 40% when deploying DPFs. PCDD/F emissions, with a focus on tetra- to octachlorinated congeners, were compared under standard and worst case conditions (enhanced chlorine uptake). The iron-catalyzed DPF neither increased PCDD/F emissions, nor did it change the congener pattern, even when traces of chlorine became available. In case of copper, PCDD/F emissions increased by up to 3 orders of magnitude from 22 to 200 to 12 700 pg I-TEQ/L with fuels of < 2, 14, and 110 microg/g chlorine, respectively. Mainly lower chlorinated DD/Fs were formed. Based on these substantial effects on PCDD/F emissions, the copper-catalyzed DPF system was not approved for workplace applications, whereas the iron system fulfilled all the specifications of the Swiss procedures for DPF approval (VERT).
Resumo:
Occurrence of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) was evaluated in sepiolite as a widely employed binder and anti-caking agent for animal feed. Also, naturally contaminated kaolinitic clay was used for comparative purposes. Since sepiolite shows remarkable adsorption properties, particular interest was paid to the extraction steps as they become critical for the final determination of these pollutants in such matrixes. Furthermore, classical Soxhlet extraction using different extracting strategies as well as acid treatment were carried out with simultaneous liquid-liquid extraction. Results obtained depended on the extraction procedure applied. Acid treatment or Soxhlet extraction using a mixture of toluene:ethanol as solvent allowed to reach the minimum requirements of recovery rates. However, Soxhlet extraction using a mixture cyclohexane:toluene as extracting solvent did not allow to comply with minimum specifications for recovery. Significant differences were obtained in TEQ units when acid treatment was applied in comparison to Soxhlet extraction. This fact can be explained because the use of drastic acid conditions allows removing strongly adsorbed analytes which can be uniquely extracted after a total destruction of the crystalline structure of sepiolite. On the contrary, Soxhlet extraction was not able to destroy the structure of sepiolite and as a consequence the PCDDs/Fs were strongly adsorbed in the internal structure of the mineral. From biological point of view the availability of these toxicants constitutes a critical aspect playing an important role in the final decision choosing particular analytical procedures. Then, acid conditions in the digestive tract should be taken into account. In this scenario, a bioaccumulation study was conducted to evaluate the transference of PCDDs/PCDFs from the sepiolite into the animal tissues when fed with feed containing sepiolite. To this end, chickens were used as a model to examine the bioavailability of PCDDs/PCDFs. Four groups of chickens were exposed through their diet to a control feed, feed with 3% w/w sepiolite as additive, feed contaminated with PCDDs/PCDFs at concentration around 2.8 pg WHO-TEQ/g and feed with 2% of a contaminated kaolinitic clay (460 pg TEQ/g mineral). Livers of the four studied groups were analyzed throughout the exposure period. Results of this trial showed that the performance of broilers was not affected by the presence of dioxins at levels tested, and chickens did not show any abnormal behaviour. Dioxins intentionally added to the diet were absorbed and accumulated in the liver in a significant manner, whereas the PCDDs/Fs from sepiolite were not available for chickens since livers from broilers fed 3% sepiolite presented similar WHO-TEQ values than those from broilers fed control diet.
Resumo:
Petroleum hydrocarbons are common contaminants in marine and freshwater aquatic habitats, often occurring as a result of oil spillage. Rapid and reliable on-site tools for measuring the bioavailable hydrocarbon fractions, i.e., those that are most likely to cause toxic effects or are available for biodegradation, would assist in assessing potential ecological damage and following the progress of cleanup operations. Here we examined the suitability of a set of different rapid bioassays (2-3 h) using bacteria expressing the LuxAB luciferase to measure the presence of short-chain linear alkanes, monoaromatic and polyaromatic compounds, biphenyls, and DNA-damaging agents in seawater after a laboratory-scale oil spill. Five independent spills of 20 mL of NSO-1 crude oil with 2 L of seawater (North Sea or Mediterranean Sea) were carried out in 5 L glass flasks for periods of up to 10 days. Bioassays readily detected ephemeral concentrations of short-chain alkanes and BTEX (i.e., benzene, toluene, ethylbenzene, and xylenes) in the seawater within minutes to hours after the spill, increasing to a maximum of up to 80 muM within 6-24 h, after which they decreased to low or undetectable levels. The strong decrease in short-chain alkanes and BTEX may have been due to their volatilization or biodegradation, which was supported by changes in the microbial community composition. Two- and three-ring PAHs appeared in the seawater phase after 24 h with a concentration up to 1 muM naphthalene equivalents and remained above 0.5 muM for the duration of the experiment. DNA-damage-sensitive bioreporters did not produce any signal with the oil-spilled aqueous-phase samples, whereas bioassays for (hydroxy)biphenyls showed occasional responses. Chemical analysis for alkanes and PAHs in contaminated seawater samples supported the bioassay data, but did not show the typical ephemeral peaks observed with the bioassays. We conclude that bacterium-based bioassays can be a suitable alternative for rapid on-site quantitative measurement of hydrocarbons in seawater.
Resumo:
We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization. These items are addressed by using the"oligomer approach" in conjunction with pressure and temperature dependent Raman spectroscopic data. In summary, we have attempted to translate the well-known strategy to study the electron (charge) structure of π−conjugated molecules by Raman spectroscopy to the case of electron (spin) interactions via the spin delocalization mechanism.
Resumo:
The quantitative structure property relationship (QSPR) for the boiling point (Tb) of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) was investigated. The molecular distance-edge vector (MDEV) index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR) and artificial neural network (ANN), respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE) of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.
Resumo:
Polychlorinated dibenzo-p-dioxins (PCDDs) and related halogenated aromatic hydrocarbons (e.g., PCDFs), often called "dioxins", are ubiquitously present environmental contaminants. Some of them, notably 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are among the most toxic synthetic compounds known. The biological effects of dioxins are mediated via the aryl hydrocarbon receptor (AhR). Mutations in the AhR transactivation domain are linked to sensitivity to the acute lethality of TCDD. We present here a study of AhR gene polymorphism in normal and cancer human tissues affecting pre-mRNA splicing in the AhR gene-coding transactivation domain region (exon 10, intron 10, exon 11 region), previously shown to be associated with AhR dysfunction. We tested 126 pairs of normal and cancer tissue samples from liver, lung, stomach, kidney, mucous, breast, and pancreas of 49 males and 77 females (45-70 years of age). We used in vitro splicing assay, RT-PCR and sequencing methods. Our results showed that in an in vitro system it is possible to reconstitute cellular pre-mRNA splicing events. Tested cancer tissues did not contain mutations in the AhR transactivation domain region when the DNA sequences were compared with those from normal tissues. There were also no differences in AhR mRNA splice variants between normal and malignant breast tissues and no polymorphisms in the studied regions or cDNA.
Resumo:
The established role of oestrogen in the development and progression of breast cancer raises questions concerning a potential contribution from the many chemicals in the environment which can enter the human breast and which have oestrogenic activity. A range of organochlorine pesticides and polychlorinated bipheryls possess oestrogen-mimicking properties and have been measured in human breast adipose tissue and in human milk. These enter the breast from varied environmental contamination of food, water and air, and due to their lipophilic properties can accumulate in breast fat. However, it is emerging that the breast is also exposed to a range of oestrogenic chemicals applied as cosmetics to the underarm and breast area. These cosmetics are left on the skin in the appropriate area, allowing a more direct dermal absorption route for breast exposure to oestrogenic chemicals and allowing absorbed chemicals to escape systemic metabolism. This review considers evidence in support of a functional role for the combined interactions of cosmetic chemicals with environmental oestrogens, pharmacological oestrogens, phyto-oestrogens and physiological oestrogens in the rising incidence of breast cancer.
Resumo:
Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg−1 to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)