951 resultados para PLATFORM VESSEL
Resumo:
This paper presents the Hill instability analysis of Tension Leg Platform (TLP) tether it, deep sea. The 2-D nonlinear beam model which is Undergoing Coupled axial and transverse vibrations, is applied. The governing equations are reduced to nonlinear Hill equation by use of the Galerkin's method and the modes superposition principle. The Hill instability charted Lip to large parameters is obtained. An important parameter M is defined and can he expressed as the functions of tether length, the platform surge and heave motion amplitudes. Some example studies are performed for various environmental conditions. The results demonstrate that the nonlinear coupling between the axial and transverse vibrations has a significant effect on the response of structure.. It needs to be considered for the accurate dynamic analysis of long TLP tether subjected to the combined platform surge and heave motions.
Resumo:
Singular perturbation theory of two-time-scale expansions was developed in inviscid fluids to investigate patternforming, structure of the single surface standing wave, and its evolution with time in a circular cylindrical vessel subject to a vertical oscillation. A nonlinear slowly varying complex amplitude equation, which involves a cubic nonlinear term, an external excitation and the influence of surface tension, was derived from the potential flow equation. Surface tension was introduced by the boundary condition of the free surface in an ideal and incompressible fluid. The results show that when forced frequency is low, the effect of surface tension on the mode selection of surface waves is not important. However, when the forced frequency is high, the surface tension cannot be neglected. This manifests that the function of surface tension is to cause the free surface to return to its equilibrium configuration. In addition, the effect of surface tension seems to make the theoretical results much closer to experimental results.
Resumo:
Two-time scale perturbation expansions were developed in weakly viscous fluids to investigate surface wave motions by linearizing the Navier-Stokes equation in a circular cylindrical vessel which is subject to a vertical oscillation. The fluid field was divided into an outer potential flow region and an inner boundary layer region. A linear amplitude equation of slowly varying complex amplitude, which incorporates a damping term and external excitation, was derived for the weakly viscid fluids. The condition for the appearance of stable surface waves was obtained and the critical curve was determined. In addition, an analytical expression for the damping coefficient was determined and the relationship between damping and other related parameters (such as viscosity, forced amplitude, forced frequency and the depth of fluid, etc.) was presented. Finally, the influence both of the surface tension and the weak viscosity on the mode formation was described by comparing theoretical and experimental results. The results show that when the forcing frequency is low, the viscosity of the fluid is prominent for the mode selection. However, when the forcing frequency is high, the surface tension of the fluid is prominent.
Resumo:
In this paper, the nonlinear collapse of the BOHAI-8 pile foundation jacket platform has been analyzed. The ultimate load and collapse process of two computational models of the structure are given. One model is of fixed support whose length is eight times the pile leg diameter and the other considers the nonlinearity of the soil-pile interaction.
Resumo:
Free surface waves in a cylinder of liquid under vertical excitation with slowly modulated amplitude are investigated in the current paper. It is shown by both theoretical analysis and numerical simulation that chaos may occur even for a single mode with modulation which can be used to explain Gollub and Meyer's experiment. The implied resonant mechanism accounting for this phenomenon is further elucidated.
Resumo:
Tension Leg Platform (TLP) is a typical compliant offshore structure for oil exploitation in deep water. Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that displacements (translations and rotations) are small magnitude. Herein a theoretical method for analyzing the nonlinear dynamic behavior of TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e. finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Using this theoretical model, we perform the numerical analysis of dynamic response of a representative TLP. The comparison between the degenerative linear solution of the proposed nonlinear model and the published one shows good agreements. Furthermore, numerical results are presented which illustrate that nonlinearities exert a distinct influence on the dynamic responses of the TLP.
Resumo:
(PDF contains 7 pages.)
Resumo:
Most of the existing mathematical models for analyzing the dynamic response of TLP are based on explicit or implicit assumptions that motions (translations and rotations) are small magnitude. However, when TLP works in severe adverse conditions, the a priori assumption on small displacements may be inadequate. In such situation, the motions should be regarded as finite magnitude. This paper will study stochastic nonlinear dynamic responses of TLP with finite displacements in random waves. The nonlinearities considered are: large amplitude motions, coupling the six degrees-of-freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. The nonlinear dynamic responses are calculated by using numerical integration procedure in the time domain. After the time histories of the dynamic responses are obtained, we carry out cycle counting of the stress histories of the tethers with rain-flow counting method to get the stress range distribution.