963 resultados para PLASTIC DEFORMATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the embedded atom method (EAM) and molecular dynamics (MD) method, the mono-crystalline copper with different defects is investigated through tension and nanoindentation simulation. The single-crystal copper nanowire with surface defects is firstly studied through tension. For validation, the tension simulations for nanowire without defect are carried out under different temperatures and strain rates. The defects on nanowires are then systematically studied in considering different defects orientation distribution. It is found that the Young’s modulus is insensitive of surface defects and centro-plane defects. However, the yield strength and yield point show a significant decrease due to the different defects. Specially, the 〖45〗^° defect in surface and in (200) plane exerts the biggest influence to the yield strength, about 34.20% and 51.45% decrease are observed, respectively. Different defects are observed to serve as a dislocation source and different necking positions of the nanowires during tension are found. During nanoindentation simulation, dislocation is found nucleating below the contact area, but no obvious dislocation is generated around the nano-cavity. Comparing with the perfect substrate during nanoindentation, the substrate with nano-cavities emerged less dislocations, it is supposed that the nano-cavity absorbed part of the indent energy, and less plastic deformation happened in the defected substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In most materials, short stress waves are generated during the process of plastic deformation, phase transformation, crack formation and crack growth. These phenomena are applied in acoustic emission (AE) for the detection of material defects in wide spectrum areas, ranging from non-destructive testing for the detection of materials defects to monitoring of microeismical activity. AE technique is also used for defect source identification and for failure detection. AE waves consist of P waves (primary/longitudinal waves), S waves (shear/transverse waves) and Rayleight (surface) waves as well as reflected and diffracted waves. The propagation of AE waves in various modes has made the determination of source location difficult. In order to use the acoustic emission technique for accurate identification of source location, an understanding of wave propagation of the AE signals at various locations in a plate structure is essential. Furthermore, an understanding of wave propagation can also assist in sensor location for optimum detection of AE signals. In real life, as the AE signals radiate from the source it will result in stress waves. Unless the type of stress wave is known, it is very difficult to locate the source when using the classical propagation velocity equations. This paper describes the simulation of AE waves to identify the source location in steel plate as well as the wave modes. The finite element analysis (FEA) is used for the numerical simulation of wave propagation in thin plate. By knowing the type of wave generated, it is possible to apply the appropriate wave equations to determine the location of the source. For a single plate structure, the results show that the simulation algorithm is effective to simulate different stress waves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the molecular dynamics (MD) simulation and the classical Euler-Bernoulli beam theory, a fundamental study of the vibrational performance of the Ag nanowire (NW) is carried out. A comprehensive analysis of the quality (Q)-factor, natural frequency, beat vibration, as well as high vibration mode is presented. Two excitation approaches, i.e., velocity excitation and displacement excitation, have been successfully implemented to achieve the vibration of NWs. Upon these two kinds of excitations, consistent results are obtained, i.e., the increase of the initial excitation amplitude will lead to a decrease to the Q-factor, and moderate plastic deformation could increase the first natural frequency. Meanwhile, the beat vibration driven by a single relatively large excitation or two uniform excitations in both two lateral directions is observed. It is concluded that the nonlinear changing trend of external energy magnitude does not necessarily mean a nonconstant Q-factor. In particular, the first order natural frequency of the Ag NW is observed to decrease with the increase of temperature. Furthermore, comparing with the predictions by Euler- Bernoulli beam theory, the MD simulation provides a larger and smaller first vibration frequencies for the clamped-clamped and clamped-free thin Ag NWs, respectively. Additionally, for thin NWs, the first order natural frequency exhibits a parabolic relationship with the excitation magnitudes. The frequencies of the higher vibration modes tend to be low in comparison to Euler-Bernoulli beam theory predictions. A combined initial excitation is proposed which is capable to drive the NW under a multi-mode vibration and arrows the coexistence of all the following low vibration modes. This work sheds lights on the better understanding of the mechanical properties of NWs and benefits the increasing utilities of NWs in diverse nano-electronic devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations have been employed to investigate the single-crystal Si properties with different pre-existing cavities under nanoindentation. Cavities with different radii and positions have been considered. It is found that pre-existing cavities in the Si substrate would obviously influence the mechanical properties of Si under nanoindentation. Furthermore, pre-existing cavities would absorb part of the strain energy during loading and then release during unloading. It would decrease plastic deformation to the substrate. Particularly, the larger of the cavity or the nearer of the cavity to the substrate’s top surface, the larger decrease of Young’s modulus and hardness is usually observed. Just as expected, the larger offset of the cavity in the lateral direction, the less influence is usually seen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nano silicon is widely used as the essential element of complementary metal–oxide–semiconductor (CMOS) and solar cells. It is recognized that today, large portion of world economy is built on electronics products and related services. Due to the accessible fossil fuel running out quickly, there are increasing numbers of researches on the nano silicon solar cells. The further improvement of higher performance nano silicon components requires characterizing the material properties of nano silicon. Specially, when the manufacturing process scales down to the nano level, the advanced components become more and more sensitive to the various defects induced by the manufacturing process. It is known that defects in mono-crystalline silicon have significant influence on its properties under nanoindentation. However, the cost involved in the practical nanoindentation as well as the complexity of preparing the specimen with controlled defects slow down the further research on mechanical characterization of defected silicon by experiment. Therefore, in current study, the molecular dynamics (MD) simulations are employed to investigate the mono-crystalline silicon properties with different pre-existing defects, especially cavities, under nanoindentation. Parametric studies including specimen size and loading rate, are firstly conducted to optimize computational efficiency. The optimized testing parameters are utilized for all simulation in defects study. Based on the validated model, different pre-existing defects are introduced to the silicon substrate, and then a group of nanoindentation simulations of these defected substrates are carried out. The simulation results are carefully investigated and compared with the perfect Silicon substrate which used as benchmark. It is found that pre-existing cavities in the silicon substrate obviously influence the mechanical properties. Furthermore, pre-existing cavities can absorb part of the strain energy during loading, and then release during unloading, which possibly causes less plastic deformation to the substrate. However, when the pre-existing cavities is close enough to the deformation zone or big enough to exceed the bearable stress of the crystal structure around the spherical cavity, the larger plastic deformation occurs which leads the collapse of the structure. Meanwhile, the influence exerted on the mechanical properties of silicon substrate depends on the location and size of the cavity. Substrate with larger cavity size or closer cavity position to the top surface, usually exhibits larger reduction on Young’s modulus and hardness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Railroad corridors contain large number of Insulated Rail Joints (IRJs) that act as safety critical elements in the circuitries of the signaling and broken rail identification systems. IRJs are regarded as sources of excitation for the passage of loaded wheels leading to high impact forces; these forces in turn cause dips, cross levels and twists to the railroad geometry in close proximity to the sections containing the IRJs in addition to the local damages to the railhead of the IRJs. Therefore, a systematic monitoring of the IRJs in railroad is prudent to mitigate potential risk of their sudden failure (e.g., broken tie plates) under the traffic. This paper presents a simple method of periodic recording of images using time-lapse photography and total station surveying measurements to understand the ongoing deterioration of the IRJs and their surroundings. Over a 500 day period, data were collected to examine the trends in narrowing of the joint gap due to plastic deformation the railhead edges and the dips, cross levels and twists caused to the railroad geometry due to the settlement of ties (sleepers) around the IRJs. The results reflect that the average progressive settlement beneath the IRJs is larger than that under the continuously welded rail, which leads to excessive deviation of railroad profile, cross levels and twists.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Metal and semiconductor nanowires (NWs) have been widely employed as the building blocks of the nanoelectromechanical systems, which usually acted a resonant beam. Recent researches reported that nanowires are often polycrystalline, which contains grain boundaries (GBs) that transect the whole nanowire into a bamboo like structure. Based on the larger-scale molecular dynamics (MD) simulations, a comprehensive investigation of the influence from grain boundaries on the vibrational properties of doubly clamped Ag NWs is conducted. It is found that, the presence of grain boundary will result in significant energy dissipation during the resonance of polycrystalline NWs, which leads a great deterioration to the quality factor. Further investigation reveals that the energy dissipation is originated from the plastic deformation of polycrystalline NWs in the form of the nucleation of partial dislocations or the generation of micro stacking faults around the GBs and the micro stacking faults is found to keep almost intact during the whole vibration process. Moreover, it is observed that the closer of the grain boundary getting to the regions with the highest strain state, the more energy dissipation will be resulted from the plastic deformation. In addition, either the increase of the number of grain boundaries or the decrease of the distance between the grain boundary and the highest strain state region is observed to induce a lower first resonance frequency. This work sheds lights on the better understanding of the mechanical properties of polycrystalline NWs, which benefits the increasing utilities of NWs in diverse nano-electronic devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Materials used in the engineering always contain imperfections or defects which significantly affect their performances. Based on the large-scale molecular dynamics simulation and the Euler–Bernoulli beam theory, the influence from different pre-existing surface defects on the bending properties of Ag nanowires (NWs) is studied in this paper. It is found that the nonlinear-elastic deformation, as well as the flexural rigidity of the NW is insensitive to different surface defects for the studied defects in this paper. On the contrary, an evident decrease of the yield strength is observed due to the existence of defects. In-depth inspection of the deformation process reveals that, at the onset of plastic deformation, dislocation embryos initiate from the locations of surface defects, and the plastic deformation is dominated by the nucleation and propagation of partial dislocations under the considered temperature. Particularly, the generation of stair-rod partial dislocations and Lomer–Cottrell lock are normally observed for both perfect and defected NWs. The generation of these structures has thwarted attempts of the NW to an early yielding, which leads to the phenomenon that more defects does not necessarily mean a lower critical force.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently, researchers reported that nanowires (NWs) are often polycrystalline, which contain grain or twin boundaries that transect the whole NW normal to its axial direction into a bamboo like structure. In this work, large-scale molecular dynamics simulation is employed to investigate the torsional behaviours of bamboo-like structured Cu NWs. The existence of grain boundaries is found to induce a considerably large reduction to the critical angle, and the more of grain boundaries the less reduction appears, whereas, the presence of twin boundaries only results in a relatively smaller reduction to the critical angle. The introduction of grain boundaries reduces the torsional rigidity of the NW, whereas, the twin boundaries exert insignificant influence to the torsional rigidity. NWs with grain boundaries are inclined to produce a local HCP structure during loading, and the plastic deformation is usually evenly distributed along the axial axis of the NW. The plastic deformation of both perfect NW and NWs with twin boundaries is dominated by the nucleation and propagation of parallel intrinsic stacking faults. This study will enrich the current understanding of the mechanical properties of NWs, which will eventually shed lights on their applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Application of 'advanced analysis' methods suitable for non-linear analysis and design of steel frame structures permits direct and accurate determination of ultimate system strengths, without resort to simplified elastic methods of analysis and semi-empirical specification equations. However, the application of advanced analysis methods has previously been restricted to steel frames comprising only compact sections that are not influenced by the effects of local buckling. A research project has been conducted with the aim of developing concentrated plasticity methods suitable for practical advanced analysis of steel frame structures comprising non-compact sections. A primary objective was to produce a comprehensive range of new distributed plasticity analytical benchmark solutions for verification of the concentrated plasticity methods. A distributed plasticity model was developed using shell finite elements to explicitly account for the effects of gradual yielding and spread of plasticity, initial geometric imperfections, residual stresses and local buckling deformations. The model was verified by comparison with large-scale steel frame test results and a variety of existing analytical benchmark solutions. This paper presents a description of the distributed plasticity model and details of the verification study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A numerical procedure based on the plastic hinge concept for study of the structural behaviour of steel framed structures exposed to fire is described. Most previous research on fire analysis considered the structural performance due to rising temperature. When strain reversal occurs during the cooling phase, the stress–strain curve is different. The plastic deformation is incorporated into the stress–strain curve to model the strain reversal effect in which unloading under elastic behaviour is allowed. This unloading response is traced by the incremental–iterative Newton–Raphson method. The mechanical properties of the steel member in the present fire analysis follows both Eurocode 3 Part 1.2 and BS5950 Part 8, which implicitly allow for thermal creep deformation. This paper presents an efficient fire analysis procedure for predicting thermal and cooling effects on an isolated element and a multi-storey frame. Several numerical and experimental examples related to structural behaviour in cooling phase are studied and compared with results obtained by other researchers. The proposed method is effective in the fire safety design and analysis of a building in a real fire scenario. The scope of investigation is of great significance since a large number of rescuers would normally enter a fire site as soon as the fire is extinguished and during the cooling phase, so a structural collapse can be catastrophic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy. The effects of environmental temperature and loading rates on impact and tension behavior of the alloy were also investigated. Design/methodology/approach: The tests were conducted using an Instron universal testing machine. The loading speed was changed from 1 mm/min to 300 mm/min to gain a better understanding of the effect of strain rate. To understand the failure behavior of this alloy at different environmental temperatures, Charpy impact test was conducted in a range of temperatures (-40~35°C). Plane strain fracture toughness (KIC) was evaluated using compact tension (CT) specimen. To gain a better understanding of the failure mechanisms, all fracture surfaces were observed using scanning electron microscopy (SEM). In addition, fatigue behavior of this alloy was estimated using tension test under tension-tension condition at 30 Hz. The stress amplitude was selected in the range of 20~50 MPa to obtain the S-N curve. Findings: The tensile test indicated that the mechanical properties were not sensitive to the strain rates applied (3.3x10-4~0.1) and the plastic deformation was dominated by twining mediated slip. The impact energy is not sensitive to the environmental temperature. The plane strain fracture toughness and fatigue limit were evaluated and the average values were 7.6 MPa.m1/2 and 25 MPa, respectively. Practical implications: Tested materials AM60 Mg alloy can be applied among others in automotive industry aerospace, communication and computer industry. Originality/value: Many investigations have been conducted to develop new Mg alloys with improved stiffness and ductility. On the other hand, relatively less attention has been paid to the failure mechanisms of Mg alloys, such as brittle fracture and fatigue, subjected to different environmental or loading conditions. In this work, tension, impact, bend and fatigue tests were conducted in an AM60 magnesium alloy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nonlinear stability analysis introduced by Chen and Haughton [1] is employed to study the full nonlinear stability of the non-homogeneous spherically symmetric deformation of an elastic thick-walled sphere. The shell is composed of an arbitrary homogeneous, incompressible elastic material. The stability criterion ultimately requires the solution of a third-order nonlinear ordinary differential equation. Numerical calculations performed for a wide variety of well-known incompressible materials are then compared with existing bifurcation results and are found to be identical. Further analysis and comparison between stability and bifurcation are conducted for the case of thin shells and we prove by direct calculation that the two criteria are identical for all modes and all materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Particle analysis methodology is presented, together with the morphology of the wear debris formed during rolling contact fatigue. Wear particles are characterised by their surface topography and in terms of wear mechanism. Rail-wheel materials are subjected to severe plastic deformation as the contact loading progresses, which contributes to a mechanism of major damage in head-hardened rail steel. Most of the current methodologies involve sectioning of the rail-wheel discs to trace material damage phenomena such as crack propagation and plastic strain accumulation. This paper proposes methodology to analyse the development of the plastically deformed layer by sectioning wear particles using the focussed ion beam (FIB) milling method. Moreover, it highlights the processes of oxidation and rail surface delamination during unlubricated rolling contact fatigue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uniaxial compression experiments on 0.3, 1 and 3 mu m diameter micropillars of a Zr-based bulk metallic glass in as-cast, shot-peened and structurally relaxed conditions were conducted. Shear band formation and stable propagation is observed to be the plastic deformation mode in all cases, with no detectable difference in yield strength according to either size or condition. The limitations of uniaxial compression tests in assessing the influence of various material conditions on plasticity, when it is inhomogeneous in nature, are illustrated.