995 resultados para PEROXYOXALATE CHEMI-LUMINESCENCE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transparent Ni2+-doped MgO-Al2O3-SiO2 glass ceramics without and with Ga2O3 were synthetized. The precipitation of spinel nanocrystals, which was identified as solid solutions in the glass ceramics, could be favored by Ga2O3 addition and their sizes were about 7.6 nm in diameter. The luminescent intensity of the Ni2+-doped glass ceramics was largely enhanced by Ga2O3 addition which could mainly be caused by increasing of Ni2+ in the octahedral sites and the reduction of the mean frequency of phonon density of states in the spinel nanocrystals of solid solutions. The full width at half maximum (FWHM) of emissions for the glass ceramics with different Ga2O3 content was all more than 200 nm. The emission lifetime increased with the Ga2O3 content and the longest lifetime is about 250 mu s. The Ni2+-doped transparent glass ceramics with Ga2O3 addition have potential application as broadband optical amplifier and laser materials. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Absorption and luminescence spectra and optical amplification in bismuth-doped germanate silicate glass were investigated. Two kinds of bismuth ion valence states could exist in the glass. One is Bi2+, which has shown red luminescence, another might be Bi+, which is the active center for infrared luminescence. The infrared luminescence excited at 700, 800, and 980 nm should be ascribed to the electronic transition P-3(1) --> P-3(0) of Bi+ ions in three distinct sites. The shifting, broadening, and multiple configuration of the luminescence could be due to the randomly disorder of local environment and multiple sites of the active centers. In this glass, obvious optical amplification was realized at 1300 nm wavelength when excited at 808 and 980 nm, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on the multicolor luminescence in oxygen-deficient Tb3+-doped calcium aluminogermanate glasses. A simple method was proposed to control oxygen-deficient defects in glasses by adding metal Al instead of the corresponding oxide (Al2O3), resulting in efficient blue and red emissions from Tb3+-undoped glasses with 300 and 380 nm excitation wavelengths, respectively. Moreover, in Tb3+-doped oxygen-deficient glasses, bright three-color (sky-blue, green or yellow, and red) luminescence was observed with 300, 380, and 395 nm excitation wavelengths, respectively. These glasses are useful for the fabrication of white light-emitting diode (LED) lighting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the bluish green upconversion luminescence of niobium ions doped silicate glass by a femtosecond laser irradiation. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the charge transfer from O-2-to Nb5+ can efficiently contribute to the bluish green emission. The results indicate that transition metal ions without d electrons play an important role in fields of optics when embedded into silicate glass matrix. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescences from bismuth-doped lime silicate glasses were investigated. Luminescences centered at about 400, 650, and 1300 nm were observed, excited at 280, 532 and 808 nm, respectively. These three luminescence bands arise from three different kinds of bismuth ions in the glasses. The visible luminescences centered at 400 and 650 nm arise from Bi3+, and Bi2+, respectively. The infrared luminescences cover the wavelength range from 1000 to 1600 nm when exited by an 808 nm laser diode. The full width at half maximum (FWHM) of the infrared luminescences is more than 205 urn. The intensity of the infrared luminescence decreases with the increment in CaO content. We suggest that the infrared luminescences might arise from Bi+. Such broadband luminescences indicate that the glasses may be potential candidate material for broadband fiber amplifiers and tunable lasers. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Near-infrared luminescence is observed from bismuth-doped GeS2-Ga2S3 chalcogenide glasses excited by an 808 nm laser diode. The emission peak with a maximum at about 1260 nm is observed in 80GeS(2)-20Ga(2)S(3):0.5Bi glass and it shifts toward the long wavelength with the addition of Bi gradually. The full width of half maximum (FWHM) is about 200 nm. The broadband infrared luminescence of Bi-doped GeS2-Ga2S3 chalcogenide glasses may be predominantly originated from the low valence state of Bi, such as Bi+. Raman scattering is also conducted to clarify the structure of glasses. These Bi-doped GeS2-Ga2S3 chalcogenide glasses can be applied potentially in novel broadband optical fibre amplifiers and broadly tunable laser in optical communication system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a novel phenomenon in GeS2-In2S3-CsI chalcohalide glass doped with Tm3+ ions. Under irradiation with an 808 nm laser diode, a bright red emission centered at 700 nm is observed for the first time in this glass. The log-log correlation between integrated emission intensity and pump power reveals that a two-photon absorption process is involved in the phenomenon, suggesting that the F-3(3,2) -> H-3(6) transition of Tm3+ ions is responsible for the appearance of the red emission. The results indicate that the indium (In) based chalcohalide glass containing Tm3+ ions is expected to find applications in visible lasers, high density optical storage and three-dimensional color displays. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NaYF4: 0.02Er center dot xYb-PVP composite nanofibers with the diameter of similar to 400 nm have been prepared by electrospinning. Field emission scanning electron microscope and X-ray diffraction have been utilized to characterize morphology and structure of the as-prepared electrospun nanofibers. Their up-conversion luminescence is investigated under a 980-nm excitation. Green (538 and 520 nm), red (6-55 nm), and blue (405 nm) emissions are observed in the up-conversion luminescence spectra, and the intensity of these three emissions changes differently with the variety of Yb content, which has been interpreted successfully in this letter. The color of NaYF4: 0.02Er center dot xYb-PVP nanolibers under a 980-nm excitation can be changed from green --> white --> yellow gradually via changing the Yb content.