816 resultados para P450 sf9 baculovirus
Resumo:
P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399_E401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399_E401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17α-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399_E401 revealed reduced stability and flexibility of the mutant. In conclusion, P399_E401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399_E401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.
Resumo:
To identify and characterize cytochrome P450 enzymes (CYPs) responsible for the metabolism of racemic ketamine in 3 mammalian species in vitro by use of chemical inhibitors and antibodies.
Resumo:
Cytochrome P450 oxidoreductase (POR) is an enzyme that is essential for multiple metabolic processes, chiefly among them are reactions catalyzed by cytochrome P450 proteins for metabolism of steroid hormones, drugs and xenobiotics. Mutations in POR cause a complex set of disorders that often resemble defects in steroid metabolizing enzymes 17α-hydroxylase, 21-hydroxylase and aromatase. Since our initial reports of POR mutations in 2004, more than 200 different mutations and polymorphisms in POR gene have been identified. Several missense variations in POR have been tested for their effect on activities of multiple steroid and drug metabolizing P450 proteins. Mutations in POR may have variable effects on different P450 partner proteins depending on the location of the mutation. The POR mutations that disrupt the binding of co-factors have negative impact on all partner proteins, while mutations causing subtle structural changes may lead to altered interaction with specific partner proteins and the overall effect may be different for each partner. This review summarizes the recent discoveries related to mutations and polymorphisms in POR and discusses these mutations in the context of historical developments in the discovery and characterization of POR as an electron transfer protein. The review is focused on the structural, enzymatic and clinical implications of the mutations linked to newly identified disorders in humans, now categorized as POR deficiency.
Resumo:
This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH-cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b(5), squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b(5) are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b(5) on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell-culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism.
Resumo:
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin is a chemical inducer of Parkinson's disease (PD) whereas N-methylated beta-carbolines and isoquinolines are naturally occurring analogues of MPTP involved in PD. This research has studied the oxidation of MPTP by human CYP2D6 (CYP2D6*1 and CYP2D6*10 allelic variants) as well as by a mixture of cytochrome P450s-resembling HLM, and the products generated compared with those afforded by human monoamine oxidase (MAO-B). MPTP was efficiently oxidized by CYP2D6 to two main products: MPTP-OH (p-hydroxylation) and PTP (N-demethylation), with turnover numbers of 10.09 min-1 and Km of 79.36+/-3 microM (formation of MPTP-OH) and 18.95 min-1 and Km 69.6+/-2.2 microM (PTP). Small amounts of dehydrogenated toxins MPDP+ and MPP+ were also detected. CYP2D6 competed with MAO-B for the oxidation of MPTP. MPTP oxidation by MAO-B to MPDP+ and MPP+ toxins (bioactivation) was up to 3-fold higher than CYP2D6 detoxification to PTP and MPTP-OH. Several N-methylated beta-carbolines and isoquinolines were screened for N-demethylation (detoxification) that was not significantly catalyzed by CYP2D6 or the P450s mixture. In contrast, various beta-carbolines were efficiently hydroxylated to hydroxy-beta-carbolines by CYP2D6. Thus, N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline (a close MPTP analog) was highly hydroxylated to 6-hydroxy-N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline and a corresponding 7-hydroxy-derivative. Thus, CYP2D6 could participate in the bioactivation and/or detoxification of these neuroactive compounds by an active hydroxylation pathway. The CYP2D6*1 enzymatic variant exhibited much higher metabolism of both MPTP and N(2)-methyl-1,2,3,4-tetrahydro-beta-carboline than the CYP2D6*10 variant, highlighting the importance of CYP2D6 polymorphism in the oxidation of these toxins. Altogether, these results suggest that CYP2D6 can play an important role in the metabolic outcome of both MPTP and beta-carbolines.
Resumo:
All microsomal P450s require POR (cytochrome P450 reductase) for catalytic activity. Most of the clinically used drugs are metabolized by a small number of P450s and polymorphisms in the cytochrome P450s are known to cause changes in drug metabolism. We have recently found a number of POR missense mutations in the patients with disordered steroidogenesis. Our initial report described five missense mutations (A284P, R454H, V489E, C566Y and V605F) identified in four patients. We built bacterial expression vectors for each POR variant, purified the membranes expressing normal or variant POR and characterized their activities with cytochrome c and P450c17 assays. We have recently completed an extensive study of the range of POR mutations and characterized the mutants/polymorphisms A112V, T139A, M260V, Y456H, A500V, G536R, L562P, R613X, V628I and F643del from sequencing of patient DNA. We also studied POR variants Y179D, P225L, R313W, G410S and G501R that were available in databases or the published literature. We analysed the mutations with a three-dimensional model of human POR that was based on an essentially similar rat POR with known crystal structure. The missense mutations found in patients with disordered steroidogenesis mapped to functionally important domains of POR and the apparent polymorphisms mapped to less crucial regions. Since a variation in POR can alter the activity of all microsomal P450s, it can also affect the drug metabolism even with a normal P450. Understanding the genetic and biochemical basis of POR-mediated drug metabolism will provide valuable information about possible differences in P450-mediated reactions among the individuals carrying a variant or polymorphic form of POR.
Resumo:
PURPOSE OF REVIEW: P450 oxidoreductase deficiency--a newly described form of congenital adrenal hyperplasia--typically presents a steroid profile suggesting combined deficiencies of steroid 21-hydroxylase and 17alpha-hydroxylase/17,20-lyase activities. These and other enzymes require electron donation from P450 oxidoreductase. The clinical spectrum of P450 oxidoreductase deficiency ranges from severely affected children with ambiguous genitalia, adrenal insufficiency and the Antley-Bixler skeletal malformation syndrome to mildly affected individuals with polycystic ovary syndrome. We review current knowledge of P450 oxidoreductase deficiency and its broader implications. RECENT FINDINGS: Since the first report in 2004, at least 21 P450 oxidoreductase mutations have been reported in over 40 patients. The often subtle manifestations of P450 oxidoreductase deficiency suggest it may be relatively common. P450 oxidoreductase deficiency, with or without Antley-Bixler syndrome, is autosomal recessive, whereas Antley-Bixler syndrome without disordered steroidogenesis is caused by autosomal dominant fibroblast growth factor receptor 2 mutations. In-vitro assays of P450 oxidoreductase missense mutations based on P450 oxidoreductase-supported P450c17 activities provide excellent genotype/phenotype correlations. The causal connection between P450 oxidoreductase deficiency and disordered bone formation remains unclear. SUMMARY: P450 oxidoreductase mutations cause combined partial deficiency of 17alpha-hydroxylase and 21-hydroxylase. Individuals with an Antley-Bixler syndrome-like phenotype presenting with sexual ambiguity or other abnormalities in steroidogenesis should be analyzed for P450 oxidoreductase deficiency.
Resumo:
BACKGROUND AND OBJECTIVE: The in vivo implication of various cytochrome P450 (CYP) isoforms and of P-glycoprotein on methadone kinetics is unclear. We aimed to thoroughly examine the genetic factors influencing methadone kinetics and response to treatment. METHODS: Genotyping for CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, ABCB1, and UGT2B7 polymorphisms was performed in 245 patients undergoing methadone maintenance treatment. To assess CYP3A activity, the patients were phenotyped with midazolam. RESULTS: The patients with lower CYP3A activity presented higher steady-state trough (R,S)-methadone plasma levels (4.3, 3.0, and 2.3 ng/mL x mg for low, medium, and high activity, respectively; P = .0002). As previously reported, CYP2B6*6/*6 carriers had significantly higher trough (S)-methadone plasma levels (P = .0001) and a trend toward higher (R)-methadone plasma levels (P = .07). CYP2D6 ultrarapid metabolizers presented lower trough (R,S)-methadone plasma levels compared with the extensive or intermediate metabolizers (2.4 and 3.3 ng/mL x mg, respectively; P = .04), whereas CYP2D6 poor metabolizer status showed no influence. ABCB1 3435TT carriers presented lower trough (R,S)-methadone plasma levels (2.7 and 3.4 ng/mL . mg for 3435TT and 3435CC carriers, respectively; P = .01). The CYP1A2, CYP2C9, CYP2C19, CYP3A5, and UGT2B7 genotypes did not influence methadone plasma levels. Only CYP2B6 displayed a stereoselectivity in its activity. CONCLUSION: In vivo, CYP3A4 and CYP2B6 are the major CYP isoforms involved in methadone metabolism, with CYP2D6 contributing to a minor extent. ABCB1 genetic polymorphisms also contribute slightly to the interindividual variability of methadone kinetics. The genetic polymorphisms of these 4 proteins had no influence on the response to treatment and only a small influence on the dose requirement of methadone.
Resumo:
BACKGROUND/AIMS: Nonalcoholic steatohepatitis (NASH) and nonalcoholic fatty liver (NAFL) have a different prognosis and should be dealt with differently. The pathogenesis of NASH implicates the overexpression of cytochrome P450 2E1 (CYP2E1). We investigated whether the noninvasive determination of CYP2E1 activity could replace a liver biopsy in order to differentiate NASH from NAFL. METHOD: Forty patients referred for suspicion of NASH underwent liver biopsy. In these patients, CYP2E1 activity was determined noninvasively by the 6-hydroxychlorzoxazone/chlorzoxazone (CHZ) ratio (CHZ test). Expression of CYP2E1 on liver slides was assessed by immunohistochemistry, and immunostaining for smooth muscle actin was used to assess the activation of hepatic stellate cells (HSC). RESULTS: Thirty patients with NASH were compared with 10 subjects with NAFL. No statistically significant difference could be identified for the clinical and biochemical parameters between the two groups. In the histology, steatosis was more important in NASH than in NAFL (P<0.0001). There was no difference either in the activity (CHZ test) or in the expression of CYP2E1 (immunohistochemistry) between patients with NASH and patients with NAFL. The degree of HSC activation was also comparable between the two groups. A positive and significant correlation was found between the activity of CYP2E1 and body mass index (P<0.001) as well as with the degree of steatosis (P=0.008). CONCLUSION: For patients suspected to have NASH, noninvasive tests including the determination of the CYP2E1 activity are unable to distinguish them from patients with steatosis.
Resumo:
Cytochrome P450 proteins are involved in metabolism of drugs and xenobiotics. In the endoplasmic reticulum a single nicotinamide adenine dinucleotide phosphate (NADPH) P450 oxidoreductase (POR) supplies electrons to all microsomal P450s for catalytic activity. POR is a flavoprotein that contains both flavin mononucleotide and flavin adenine dinucleotide as cofactors and uses NADPH as the source of electrons. We have recently reported a number of POR mutations in the patients with disordered steroidogenesis. In the first report we had described missense mutations (A287P, R457H, V492E, C569Y, and V608F) identified in four patients with defects in steroid production. Each POR variant was produced as recombinant N-27 form of the enzyme in bacteria and as full-length form in yeast. Membranes from bacteria or yeast expressing normal or variant POR were purified and their activities were characterized in cytochrome c and CYP17A1 assays. Later we have published a larger study that described a whole range of POR mutations and characterized the mutants/polymorphisms A115V, T142A, M263V, Y459H, A503V, G539R, L565P, R616X, V631I, and F646del from the sequencing of patient DNA. We also studied POR variants Y181D, P228L, R316W, G413S, and G504R that were available in public databases or published literature. Three-dimensional structure of rat POR is known and we have used this structure to deduce the structure-function correlation of POR mutations in human. The missense mutations found in patients with disordered steroidogenesis are generally in the co-factor binding and functionally important domains of POR and the apparent polymorphisms are found in regions with lesser structural importance. A variation in POR can alter the activity of all microsomal P450s, and therefore, can affect the metabolism of drugs and xenobiotics even when the P450s involved are otherwise normal. It is important to study the genetic and biochemical basis of POR variants in human population to gain information about possible differences in P450 mediated reactions among the individuals carrying a variant or polymorphic form of POR that could impact their metabolism.
Resumo:
OBJECTIVE: The previously described c655G>A mutation of the human cytochrome P450 aromatase gene (P450aro, CYP19) results in aberrant splicing due to disruption of a donor splice site. To explain the phenotype of partial aromatase deficiency observed in a female patient described with this mutation, molecular consequences of the c655G>A mutation were investigated. DESIGN: To investigate whether the c655G>A mutation causes an aberrant spliced mRNA lacking exon 5 (-Ex5), P450aro RNA was analysed from the patient's lymphocytes by reverse transcription polymerase chain reaction (RT-PCR) and by splicing assays performed in Y1 cells transfected with a P450aro -Ex5 expression vector. Aromatase activity of the c655G>A mutant was predicted by three dimensional (3D) protein modelling studies and analysed in transiently transfected Y1 cells. Exon 5 might be predicted as a poorly defined exon suggesting a susceptibility to both splicing mutations and physiological alternative splicing events. Therefore, expression of the -Ex5 mRNA was also assessed as a possibly naturally occurring alternative splicing transcript in normal human steroidogenic tissues. PATIENTS: An aromatase deficient girl was born with ambiguous genitalia. Elevated serum LH, FSH and androgens, as well as cystic ovaries, were found during prepuberty. At the age of 8.4 years, spontaneous breast development and a 194.6 pmol/l serum oestradiol level was observed. RESULTS: The -Ex5 mRNA was found in lymphocytes of the P450aro deficient girl and her father, who was a carrier of the mutation. Mutant minigene expression resulted in complete exon 5 skipping. As expected from 3D protein modelling, -Ex5 cDNA expression in Y1 cells resulted in loss of P450aro activity. In addition, the -Ex5 mRNA was present in placenta, prepubertal testis and adrenal tissues. CONCLUSIONS: Alternative splicing of exon 5 of the CYP19 gene occurs in the wild type (WT) as well as in the c655G>A mutant. We speculate that for the WT it might function as a regulatory mechanism for aromatization, whereas for the mutant a relative prevalence of the shorter over the full-length protein might explain the phenotype of partial aromatase deficiency.
Resumo:
Mutations in NADPH P450 oxidoreductase (POR) cause a broad spectrum of human disease with abnormalities in steroidogenesis. We have studied the impact of P450 reductase mutations on the activity of CYP19A1. POR supported CYP19A1 activity with a calculated Km of 126 nm for androstenedione and a Vmax of 1.7 pmol/min. Mutations R457H and V492E located in the FAD domain of POR that disrupt electron transfer caused a complete loss of CYP19A1 activity. The A287P mutation of POR decreased the activities of CYP17A1 by 60-80% but had normal CYP19A1 activity. Molecular modeling and protein docking studies suggested that A287P is involved in the interaction of POR:CYP17A1 but not in the POR:CYP19A1 interaction. Mutations C569Y and V608F in the NADPH binding domain of POR had 49 and 28% of activity of CYP19A1 compared with normal reductase and were more sensitive to the amount of NADPH available for supporting CYP19A1 activity. Substitution of NADH for NADPH had a higher impact on C569Y and V608F mutants of POR. Similar effects were obtained at low/high (5.5/8.5) pH, but using octanol to limit the flux of electrons from POR to CYP19A1 inhibited activity supported by all variants. High molar ratios of KCl also reduced the CYP19A1 supporting activities of C569Y and V608F mutants of POR to a greater extent compared to normal POR and A287P mutant. Because POR supports many P450s involved in steroidogenesis, bone formation, and drug metabolism, variations in the effects of POR mutations on specific enzyme activities may explain the broad clinical spectrum of POR deficiency.
Resumo:
Patients with adrenal insufficiency, genital anomalies and bony malformations resembling the Antley- Bixler syndrome (a craniosynostosis syndrome), are likely to have P450 oxidoreductase (POR) deficiency. Since our first report in 2004, about 26 recessive POR mutations have been identified in 50 patients. POR is the obligate electron donor to all microsomal (type II) P450 enzymes, including the steroidogenic enzymes CYP17A1, CYP21A2 and CYP19A1. POR deficiency may cause disordered sexual development manifested as genital undervirilization in 46,XY newborns as well as overvirilization in those who are 46,XX. This may be explained by impaired aromatization of fetal androgens which may also lead to maternal virilization and low urinary estriol levels during pregnancy. A role for the alternate 'backdoor' pathway of androgen biosynthesis, leading to dihydrotestosterone production bypassing androstenedione and testosterone, has been suggested in POR deficiency but remains unclear. POR variants may play an important role in drug metabolism, as most drugs are metabolized by hepatic microsomal P450 enzymes. However, functional assays studying the effects of specific POR mutations on steroidogenesis showed that several POR variants impaired CYP17A1, CYP21A2 and CYP19A1 activities to different degrees, indicating that each POR variant must be studied separately for each potential target P450 enzyme. Thus, the impact of POR mutations on drug metabolism by hepatic P450s requires further investigation.