975 resultados para Overtures (Piano, 4 hands), Arranged.
Resumo:
Part for violin.
Resumo:
Mode of access: Internet.
Resumo:
Concert Program
Resumo:
In the title compound, [Al(C8H4F3O2S)3]3[Fe(C8H4F3O2S)3], the metal centre is statistically occupied by AlIII and FeIII cations in a 3:1 ratio. The metal centre is within an octahedral O6 donor set defined by three chelating substituted acetoacetonate anions. The ligands are arranged around the periphery of the molecule with a mer geometry of the S atoms.
Resumo:
The molecules of the title compound, C16H16O2, display an intramolecular O—HO hydrogen bond between the hydroxyl donor and the ketone acceptor. Intermolecular C—Hπ interactions connect adjacent molecules into chains that propagate parallel to the ac diagonal. The chains are arranged in sheets, and molecules in adjacent sheets interact via intermolecular O—HO hydrogen bonds.
Resumo:
Digital image
Resumo:
The asymmetric unit of the title compound, (C14H13N2S)(2)CuBr4]center dot 2H(2)O, contains two cations, one anion and two solvent water molecules that are connected via O-H center dot center dot center dot Br, N-H center dot center dot center dot Br and N-H center dot center dot center dot O hydrogen bonds into a two-dimensional polymeric structure. The cations are arranged in a head-to-tail fashion and form stacks along 100]. The central Cu-II atom of the anion is in a distorted tetrahedral environment.
Resumo:
In this paper, we have carried out thin film characterization of poly(3,4-propylenedioxythiophene)-sultone (PProDOT-S), a derivative of electrochromic poly(3,4-propylenedioxythiophene) (PProDOT). PProDOT-S was deposited onto transparent conducting oxide coated glass substrates by solution casting method. Single wavelength spectrophotometry is used to monitor the switching speed and contrast ratio at maximum wavelength (lambda (max)). The percentage transmittance at the lambda (max) of the neutral polymer is monitored as a function of time when the polymer film is repeatedly switched. This experiment gives a quantitative measure of the speed with which a film is able to switch between the two states i.e. the coloured and the bleached states. PProDOT-S films were switched at a voltage of 1 center dot 9 V with a switching speed of 2 s at lambda (max) of 565 nm and showed a contrast of similar to 37%. Cyclic voltammetry performed at different scan rates have shown the characteristic anodic and cathodic peaks. The structural investigations of PProDOT-S films by IR spectra were in good agreement with previously reported results. Raman spectra of PProDOT-S showed a strong Raman peak at 1509 cm (-aEuro parts per thousand 1) and a weak peak at 1410 cm (-aEuro parts per thousand 1) due to the C = C asymmetric and symmetric stretching vibrations of thiophene rings. The morphological investigations carried out by using scanning electron microscope (SEM) of polymer films have shown that these polymers are found to be arranged in dense packed clusters with non-uniform distribution having an average width and length of 95 nm and 160 nm, respectively.
Resumo:
In this paper, we derive analytical expressions for mass and stiffness functions of transversely vibrating clamped-clamped non-uniform beams under no axial loads, which are isospectral to a given uniform axially loaded beam. Examples of such axially loaded beams are beam columns (compressive axial load) and piano strings (tensile axial load). The Barcilon-Gottlieb transformation is invoked to transform the non-uniform beam equation into the axially loaded uniform beam equation. The coupled ODEs involved in this transformation are solved for two specific cases (pq (z) = k (0) and q = q (0)), and analytical solutions for mass and stiffness are obtained. Examples of beams having a rectangular cross section are shown as a practical application of the analysis. Some non-uniform beams are found whose frequencies are known exactly since uniform axially loaded beams with clamped ends have closed-form solutions. In addition, we show that the tension required in a stiff piano string with hinged ends can be adjusted by changing the mass and stiffness functions of a stiff string, retaining its natural frequencies.
Resumo:
Calixarene-capped Co-32 clusters are constructed by a sodalite Co-24(II) cage and an encapsulated Co-8(III) cube. The spherical units are arranged into three isomeric structures, two of which are stacked by the bcc lattices and the third of which is assembled by the cubic closest packing of the spherical units.
Resumo:
This thesis examines a tactile sensor and a thermal sensor for use with the Utah-MIT dexterous four fingered hand. Sensory feedback is critical or full utilization of its advanced manipulatory capabilities. The hand itself provides tendon tensions and joint angles information. However, planned control algorithms require more information than these sources can provide. The tactile sensor utilizes capacitive transduction with a novel design based entirely on silicone elastomers. It provides an 8 x 8 array of force cells with 1.9 mm center-to-center spacing. A pressure resolution of 8 significant bits is available over a 0 to 200 grams per square mm range. The thermal sensor measures a material's heat conductivity by radiating heat into an object and measuring the resulting temperature variations. This sensor has a 4 x 4 array of temperature cells with 3.5 mm center-to-center spacing. Experiments show that the thermal sensor can discriminate among material by detecting differences in their thermal conduction properties. Both sensors meet the stringent mounting requirements posed by the Utah-MIT hand. Combining them together to form a sensor with both tactile and thermal capabilities will ultimately be possible. The computational requirements for controlling a sensor equipped dexterous hand are severe. Conventional single processor computers do not provide adequate performance. To overcome these difficulties, a computational architecture based on interconnecting high performance microcomputers and a set of software primitives tailored for sensor driven control has been proposed. The system has been implemented and tested on the Utah-MIT hand. The hand, equipped with tactile and thermal sensors and controlled by its computational architecture, is one of the most advanced robotic manipulatory devices available worldwide. Other ongoing projects will exploit these tools and allow the hand to perform tasks that exceed the capabilities of current generation robots.
Resumo:
The Fantasy form offered a composer the freedom to create a work without concerns for fitting into the current stylistic and traditional structures. The flowering of the form seems to be concentrated from 1820-1920 since the composer started to use it as a way to convey a personal idea or to portray a special spirit. This dissertation is comprised of three recitals with fantasies in different genres and styles. Through performing these diverse fantasies, I have been inspired to connect with the imagery and spirit of the compositions in order to capture the unique sentiments of each piece. Also, in order to keep the audience absorbed in the music that is without structure, I have focused on expanding my technical abilities to vary color, sonority, and phrasing. Program one (April 26,2004) includes Fantasie, Op. 17 and Piano Concerto, Op. 54 (assisted by Ya-Hsin Wu) by R. Schumann. Program two (December 10, 2004) includes Three Fantastic Dances, Op. 5 by D. Shostakovitch, Fantasy "Sonataecossaise ", Op. 28 by F. Mendelssohn, Sonata No.2 "Sonata-Fantasy", Op. 19 by A. Scriabin and Fantasie for Piano and Violin, D 934 by F. Schubert with violinist, TaoChang Yu. The last program (November 1, 2005) includes Fantasia baetica by E. de Falla, Morceaux de Fantaisie, Op. 3 by S. Rachrnaninoff, Fantaisie, Op. 49, Impromptu No. 4 '%h.ntasy-hpromptu", Op. 66 and Polonaise-Fantaisie, Op. 61 by F. Chopin.