969 resultados para Orthorhombic crystal structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supra molecular architectures of coordination complexes of liydrazones through non covalent interactions have been explored. Molecular self—assernbly driven by weak interactions such as hydrogen— bonding, K '”T[, C-1-I‘ "TE, van der Waals interactions, and so forth are currently of tremendous research interest in the fields of molecule based materials. The directional properties of the hydrogembonding interaction associate discrete molecules into aggregate structures that are sufficiently stable to be considered as independent chemical species. Chemistry can borrow nature’s strategy to utilize hydrogen-bonding as Well as other noncovalent interactions as found in secondary and tertiary structures of proteins such as the double helix folding of DNA, hydrophobic selflorganization of phospholipids in cell membrane etc. In supramolecular chemistry hydrogen bonding plays an important role in forming a variety of architectures. Thus, the wise modulation and tuning of the complementary sites responsible for hydrogen—bond formation have led to its application in supramolecular electronics, host-guest chemistry, self-assembly of molecular capsules, nanotubes etc. The work presented in this thesis describes the synthesis and characterization of metal complexes derived from some substituted aroylhydrazones. The thesis is divided into seven chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thiosemicarbazones have emerged as an important class of ligands over a period of time, for a variety of reasons, such as variable donor properties, structural diversity and biological applications. Interesting as the coordination chemistry may be, the driving force for the study of these ligands has undoubtedly been their biological properties and the majority of the 3000 or so publications on thiosemicarbazones since 2000 have alluded to this feature. Thiosemicarbazones with potential donor atoms in their structural skeleton fascinate coordination chemists with their versatile chelating behavior. The thiosemicarbazones of aromatic aldehydes and ketones form stable chelates with transition metal cations by utilizing both their sulfur and azomethine nitrogen as donor atoms. They have been shown to possess a diverse range of biological activities including anticancer, antitumor, antibacterial, antiviral, antimalarial and antifungal properties owing to their ability to diffuse through the semipermeable membrane of the cell lines. The enhanced effect may be attributed to the increased lipophilicity of the metal complexes compared to the ligand alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mn(II) complexes derived from a set of acylhydrazones were synthesised and characterized by elemental analyzes, IR, UV–vis and X-band EPR spectral studies as well as conductivity and magnetic susceptibility measurements. In the reported complexes, the hydrazones exist either in the keto or enolate form, as evidenced by IR spectral data. Crystal structures of two complexes are well established using single crystal X-ray diffraction studies. In both of these complexes two equivalent monoanionic ligands are coordinated in a meridional fashion using cis pyridyl, trans azomethine nitrogen and cis enolate oxygen atoms positioned very nearly perpendicular to each other. EPR spectra in DMF solutions at 77 K show hyperfine sextets and in some of the complexes the low intensity forbidden lines lying between each of the two hyperfine lines are also observed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four manganese(II) complexes Mn2(paa)2(N3)4 (1), [Mn(paa)2(NCS)2] 3/2H2O (2), Mn(papea)2(NCS)2 (3), [Mn(dpka)2(NCS)2] 1/2H2O(4) of three neutral N,N donor bidentate Schiff bases were synthesized and physico- chemically characterized by means of partial elemental analyses, electronic, infrared and EPR spectral studies. Compounds 3 and 4 were obtained as single crystals suitable for X-ray diffraction. Compound 4 recrystallized as Mn(dpka)2(NCS)2. Both the compounds crystallized in the monoclinic space groups P21 for 3 and C2/c for 4. Manganese(II) is found to be in a distorted octahedral geometry in both the monomeric complexes with thiocyanate anion as a terminal ligand coordinating through the nitrogen atom. EPR spectra in DMF solutions at 77 K show hyperfine sextets with low intensity forbidden lines lying between each of the two main hyperfine lines and the zero field splitting parameters (D and E) were calculated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A family of 16 isomolecular salts (3-XpyH)(2)[MX'(4)] (3-XpyH=3-halopyridinium; M=Co, Zn; X=(F), Cl, Br, (I); X'=Cl, Br, I) each containing rigid organic cations and tetrahedral halometallate anions has been prepared and characterized by X-ray single crystal and/or powder diffraction. Their crystal structures reflect the competition and cooperation between non-covalent interactions: N-H center dot center dot center dot X'-M hydrogen bonds, C-X center dot center dot center dot X'-M halogen bonds and pi-pi stacking. The latter are essentially unchanged in strength across the series, but both halogen bonds and hydrogen bonds are modified in strength upon changing the halogens involved. Changing the organic halogen (X) from F to I strengthens the C-X center dot center dot center dot X'-M halogen bonds, whereas an analogous change of the inorganic halogen (X') weakens both halogen bonds and N-H center dot center dot center dot X'-M hydrogen bonds. By so tuning the strength of the putative halogen bonds from repulsive to weak to moderately strong attractive interactions, the hierarchy of the interactions has been modified rationally leading to systematic changes in crystal packing. Three classes of crystal structure are obtained. In type A (C-F center dot center dot center dot X'-M) halogen bonds are absent. The structure is directed by N-H center dot center dot center dot X'-M hydrogen bonds and pi-stacking interactions. In type B structures, involving small organic halogens (X) and large inorganic halogens (X'), long (weak) C-X center dot center dot center dot X'-M interactions are observed with type I halogen-halogen interaction geometries (C-X center dot center dot center dot X' approximate to X center dot center dot center dot X'-M approximate to 155 degrees), but hydrogen bonds still dominate. Thus, minor but quite significant perturbations from the type A structure arise. In type C, involving larger organic halogens (X) and smaller inorganic halogens (X'), stronger halogen bonds are formed with a type II halogen-halogen interaction geometry (C-X center dot center dot center dot X' approximate to 180 degrees; X center dot center dot center dot X'-M approximate to 110 degrees) that is electrostatically attractive. The halogen bonds play a major role alongside hydrogen bonds in directing the type C structures, which as a result are quite different from type A and B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new cadmium (II) complexes [Cd(hmt)(dca)(2)] (n) (1) and [Cd-3(hmt)(2)(SeCN)(6)(H2O)(2)] (n) (2) (hmt=hexamethylenetetramine, dca=dicyanamide) have been synthesized and characterized by X-ray single-crystal analysis. The complex 1 is a 2D rectangular grid of octahedral cadmium (II) with CdN6 chromophore where cadmium centers are doubly bridged by dicyanamide and hmt along a-axis, which are interlinked by dicyanamide running along c-axis. Whereas, complex 2 is a 1D chain of octahedral cadmium (II) with a three-leg ladder topology running along a-axis. The Cd(II) centers are doubly bridged through SeCN (infinite rail) along a-axis and singly bridged by hmt (two-step rung) along c-axis, having cadmium centers with CdSe2N3O and CdSe2N4 chromophores. The adjacent chains through H-bonding between coordinated water and hmt, and (SeSe)-Se-... interaction are extended to 2D supramolecular architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two octahedral complexes [Ni(HL1)(2)](ClO4)(2) (1) and [Ni(HL2)(2)](ClO4)(2) (2) and a square planar complex [Ni(HL3)]ClO4 (3) have been prepared, where [HL1 = 3-(2-amino-ethylimino)-butan-2-one oxime, HL2 = 3-(2-amino-propylimino)butan-2-one oxime] and H2L3 = 3-[2-(3-hydroxy-1-methyl-but-2-enylideneamino)-1-methyl-ethylimino]-buta n-2-one oxime. All the complexes have been characterized by elemental analyses, spectral studies and room temperature magnetic moment measurements. The molecular structures of all three compounds were elucidated on the basis of X-ray crystallography: complexes 1 and 2 are seen to be the met isomers. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new carboxylato-bridged polymeric networks of Mn-II having molecular formula [Mn(ox)(dpyo)](n) (1), {[Mn-2(mal)(2)(bpee)(H2O)(2)]center dot 0.5(bpee)center dot 0.5(CH3OH)}n, (2) and {[Mn-3(btc)(2)(2,2'-bipy)(2)(H2O)(6)]center dot 4H(2)O}(n) (3) [dpyo, 4,4'-bipyridine N,N'dioxide; bpee, trans-1,2 bis(4-pyridyl) ethylene; 2,2'-bipy, 2,2'-bipyridine; ox = oxalate dianion; mal = malonate dianion; btc = 1,3,5-benzenetricarboxylate trianion] have been synthesized and characterized by single-crystal X-ray diffraction studies and low temperature magnetic measurements. Structure determination of complex I reveals a covalent bonded 2D network containing bischelating oxalate and bridging dpyo; complex 2 is a covalent,bonded 3D polymeric architecture, formed by bridging malonate and bpee ligands, resulting in an open framework with channels filled by uncoordinated disordered bpee and methanol molecules. Whereas complex 3, comprising btc anions bound to three metal centers, is a 1D chain which further extends its dimensionality to 3D via pi-pi and H-bonding interactions. Low temperature magnetic measurements reveal the existence of weak antiferromagnetic interaction in all these complexes. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Five new thioantimonates have been synthesized in the presence of organic amines under solvothermal conditions and their structures determined by single-crystal X-ray diffraction. All of the compounds are layered and contain antimony-sulphide anions of stoichiometry [Sb4S7](2-), but the structure of the anion formed is dependent on the amine used in synthesis. (H3N(CH2)(4)NH3)[Sb4S7] (1) contains [Sb4S7](2-) double chains directed along [010]. Weak interchain Sb-S interactions between neighbouring chains cause the double chains to pack into layers in the ab plane. In the [001] direction, the layers of double chains alternate with doubly protonated diaminobutane molecules to which the chains are hydrogen bonded. Compounds of general formula (TH)(2)[Sb4S7] (T= CH3(CH2)(2)NH2 (2), (CH3)(2)CHNH2 (3), CH3(CH2)(3)NH2 (4) and CH3(CH2)(4)NH2 (5)) adopt a more complex structure in which [Sb3S8](7-) units are linked by Sb-3(3-) pyramids to form chains, which in turn are bridged by sulphur atoms to create sheets containing large heterorings. Pairs of such sheets form double layers of four atoms thickness that are stacked along [001]. Protonated amine molecules are located between anionic antimony-sulphide layers to which they are hydrogen bonded. Thermal analysis reveals that the decomposition temperature of materials containing [Sb4S7](2-) anions is dependent both on the structure of the anion, the lowest decomposition temperature being that of the low-dimensional phase (1) and on the identity of the amine, the decomposition temperature decreasing with an increasing number of carbon atoms and decreasing density. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four new trinuclear copper(II) complexes, [(CuL1)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (1), [(CuL2)(3)(mu(3)-OH)](CIO4)(2) (2), [(CuL3)(3)-(mu(3)-OH)](ClO4)(4)center dot H2O (3), and [(CuL4)(3)(mu(3)-OH)](ClO4)(2)center dot H2O (4), where HL1 = 8-amino-4,7,7-trimethyl-5-azaoct-3-en-2-one, HL2 = 7-amino-4-methyl-5-azaoct-3-en-2-one, HL3 = 7(ethylamino)-4-methyl-5-azahept-3-en-2-one, and HL4 = 4-methyl-7-(methylamino)-5-azahept-3-en-2-one, have been derived from the four tridentate Schiff bases (HL1, HL2, HL3, and HL4) and structurally characterized by X-ray crystallography. For all compounds, the cationic part is trinuclear with a CU3OH core held by three carbonyl oxygen bridges between each pair of copper(II) atoms. The copper atoms are five-coordinate with a distorted square-pyramidal geometry; the equatorial plane consists of the bridging oxygen atom of the central OH group together with three atoms (N, N, O) from one ligand whereas an oxygen atom of a second ligand occupies the axial position. Magnetic measurements have been performed in the 2-300 K temperature range. The experimental data could be satisfactorily reproduced by using an isotropic exchange model, H = -J(S1S2+S2S3+S1S3) yielding as best-fit parameters: J = -66.7 and g = 2.19 for 1, J = -36.6 and g = 2.20 for 2, J = -24.5 and g = 2.20 for 3, and J = -14.9 and g = 2.05 for 4. EPR spectra at low temperature show the existence of spin frustration in complexes 3 and 4, but it has not been possible to carry out calculations of the antisymmetric exchange parameter, G, from magnetic data. In frozen methanolic solution, at 4 K, hyperfine splitting in all complexes and spin frustration in complex 4 seem to be confirmed. ((c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New lanthanide complexes of 2-hydroxynicotinic acid (H(2)nicO) [Ln(HnicO)(2)(mu-HnicO)(H2O)] (.) nH(2)O (Ln = Eu, Gd, Tb, Er, Tm) were prepared. The crystal structures of the [Tb(HnicO)(2)(g-HnicO)(H2O)] (.) 1.75H(2)O(1) and [Eu(HniCO)(2)(mu-HnicO)(H2O)] (.) 1.25H(2)O (2) complexes were determined by X-ray diffraction. The 2-hydroxynicotinate ligand coordinates through O,O-chelation to the lanthanide(III) ions as shown by X-ray diffraction and the infrared, Raman and NMR spectroscopy results. Photoluminescence measurements were performed for the Eu(III) and Tb(III) complexes. Lifetimes of 0.592 +/- 0.007 and 0.113 +/- 0.002 ms were determined for the Eu3+ and Tb3+ emitting states D-5(0) and D-5(4), respectively. A value around 30% was found for the D-5(0) quantum efficiency. The energy transfer mechanisms between the lanthanide ions and the ligands are discussed and compared with those observed in similar complexes involving the 3-hydroxypicolinate ligand based on the luminescence of the respective Gd3+-based complexes. (C) 2003 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal structure determination of adducts of sparteine and PhLi, (-)-sparteine and PhOLi and of sparteine and PhLi/PhOLi reveal a four-membered ring with two lithium centers, each capped by a (-)-sparteine ligand, as central motif of all structure. Quantum-chemical calculations show that the mixed aggregate [PhLi center dot PhOLi center dot 2(-)-sparteine] is energetically more favorable than the model system {1/2[PhLi center dot(-)-sparteine](2) + 1/2[PhOLi center dot(-)-sparteine](2)}.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new complex salts of the form (Bu4N)(2)[Ni(L)(2)] (1) and (Ph4P)(2)[Ni(L)(2)] (2) and four heteroleptic complexes cis-M(PPh3)(2)(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2N=CS2] and cis-M(PPh3)(2)(L') [M = Pd(II) (5), Pt(II) (6), L' = C6H5SO2N=CS2] were prepared and characterized by elemental analyses, IR, H-1, C-13 and P-31 NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)(2)(SH)(2), 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H center dot center dot center dot Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with sigma(rt) values similar to 10 (5) S cm (1) show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coordination behavior of pyridylmethylthioether type of organic moieties having N2S2 donor set [L-1=1,2-bis(2-pyridylmethylthio)ethane, L-2 = 1,3-bis(2-pyridylmethyl-thio)propane and L-3 = 1,4-bis(2-pyridylmethylthio)butane] with copper(II) chloride and copper(II) bromide have been studied in different chemical environments. Copper(II) chloride assisted C-S bond cleavage of the organic moieties leading to the formation of copper(II) picolinate derivatives, whereas, under similar experimental conditions, no C-S bond cleavage was observed in the reaction with copper(II) bromide. The resulted copper(II) complexes isolated from the different mediums have been characterized by spectroscopic and X-ray crystallographic tools.