935 resultados para Ornamental plants
Resumo:
Possible effects of climate change means great challenges to landscape design professionals in Hungary. Our climate will shift towards the Mediterranean and we have to prepare for this with among others, choosing correctly the plants to be planted. Teaching garden design dendrology has not recognized yet the necessity and urgency of this matter. Quick measures are required due to the long life-time and slow development of woody taxons. This paper presents the double relationship between landscape design and climate change emphasizing the outdoor architectural methods of adjustment. Such techniques recognized abroad are presented like precipitation drainage by vegetation and extensive green roof. Finally the effects of climate change on ornamental plants application are presented together with the associated project started at the Corvinus University of Budapest in 2010.
Resumo:
The effect of a pre-shipment hypochlorite treatment on botrytis incidence was evaluated in a large number of rose cultivars and under different long-term storage conditions. Application parameters, stability and sources of hypochlorite were investigated. Irrespective of the type of packaging and shipment conditions, roses that received a pre-shipment treatment with 100 to 150 mg/L hypochlorite showed a significantly decreased botrytis incidence compared to non-hypochlorite treated roses. The hypochlorite treatment generally was more effective than a comparable treatment with commercial fungicides. Dipping the flower heads for approximately one second in a hypochlorite solution was more effective than spraying the heads. In few cases minor hypochlorite-induced damage on the petal tips was observed at higher concentrations (>200 mg/L). Apart from the effect on botrytis incidence, the treatment resulted in reduced water loss that may have an additional beneficial effect on the eventual flower quality. It is concluded that, apart from other obvious measures to reduce botrytis incidence (prevention of high humidity at the flower heads) a pre-shipment floral dip in 100 to 150 mg/L hypochlorite from commercial household bleach is an easy and cost effective way to reduce botrytis incidence following long term storage/transportation of roses. © 2015, International Society for Horticultural Science. All rights reserved.
Resumo:
An inherently short vase life is a problematic characteristic of cut flowers and foliage for otherwise attractive native Australian Acacia spp. Reasons underlying the poor postharvest water uptake of cut acacia stems have been elusive. A. holosericea was used to investigate possible bacteria-induced and wound-induced xylem occlusion. The effects of bacterial-and wound-induced xylem blockage on water uptake were investigated by light and scanning and transmission electron microscopy. Observations were made on cut stems that stood into either deionised water (DIW; control) or 0.5 mM Cu2+ solution and on stems pulsed with 2.2 mM Cu2+ solution and then stood into DIW. The stem-end region of cut A. holosericea that stood into DIW or Cu2+ solution became covered with bacterial growth after 3 days. Regardless of the bacterial biofilm, the Cu2+ treated stems had improved water relations and vase life. Therefore, the biofilm had little or no effect on cut A. holosericea longevity. Further observations revealed presence of a vessel-occluding substance (gel) originating from axial parenchyma cells in direct physical contact with xylem vessels. The gel exuded into vessel lumens through pit membranes, evidently as a wound-response. Xylem occlusion by gels in A. holosericea may be especially problematic due to an abundance of secretory contact cells relative to xylem elements. Nonetheless, active wound response processes may be the key determinant of short postharvest longevity for this and possibly other cut Acacia spp. Cu2+ treatments, however, disrupted the secretory function of axial parenchyma cells thereby preventing vessel occlusion by the gels.
Resumo:
Postharvest treatments with nano-silver (NS) alleviate bacteria-related stem blockage of some cut flowers to extend their longevity. Gladiolus (Gladiolus hybridus) is a commercially important cut flower species. For the first time, the effects of NS pulses on cut gladiolus ‘Eerde’ spikes were investigated towards reducing bacterial colonization of and biofilm formation on their stems. As compared with a deionized water (DIW) control, pulse treatments with NS at 10, 25 and 50 mg L−1 for 24 h significantly (P ≤ 0.05) prolonged the vase life of cut gladiolus spikes moved into vases containing DIW. The NS treatments enhanced floret ‘opening rate’ and ‘daily ornamental value’. Although there were no significant differences among NS treatments, a 25 mg L−1 NS pulse treatment tended to give the longest vase life and the best ‘display quality’. All NS pulse treatments significantly improved water uptake by and reduced water loss from flowering spikes, thereby delaying the loss of water balance and maintaining relative fresh weight. Fifty (50) mg L−1 NS pulse-treated cut gladiolus spikes tended to exhibit the most water uptake and highest water balance over the vase period. However, there was no significant difference between 25 and 50 mg L−1 NS pulse treatments. Observations of stem-end bacterial proliferation during the vase period on cut gladiolus spikes either with or without NS pulse treatments were performed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). As compared to the control treatment, they revealed that the 25 mg L−1 NS pulse treatment effectively inhibited bacterial colonization and biofilm formation on the stem-end cut surface and in the xylem vessels, respectively. In vitro culture of the bacterial microflora and analysis of biofilm architecture using CLSM revealed that NS treatment restricted bacterial biofilm formation. After static culture for 24 h at 35 °C with 25 mg L−1 NS in the medium, no biofilm form or structure was evident. Rather, only limited bacterial cell number and scanty extracellular polysaccharide (EPS) material were observed. In contrast, mature bacterial biofilm architecture comprised of abundant bacteria interwoven with EPS formed in the absence of NS.
Resumo:
Background: Gene expression studies are a prerequisite for understanding the biological function of genes. Because of its high sensitivity and easy use, quantitative PCR (qPCR) has become the gold standard for gene expression quantification. To normalise qPCR measurements between samples, the most prominent technique is the use of stably expressed endogenous control genes, the so called reference genes. However, recent studies show there is no universal reference gene for all biological questions. Roses are important ornamental plants for which there has been no evaluation of useful reference genes for gene expression studies. Results: We used three different algorithms (BestKeeper, geNorm and NormFinder) to validate the expression stability of nine candidate reference genes in different rose tissues from three different genotypes of Rosa hybrida and in leaves treated with various stress factors. The candidate genes comprised the classical "housekeeping genes" (Actin, EF-1α, GAPDH, Tubulin and Ubiquitin), and genes showing stable expression in studies in Arabidopsis (PP2A, SAND, TIP and UBC). The programs identified no single gene that showed stable expression under all of the conditions tested, and the individual rankings of the genes differed between the algorithms. Nevertheless the new candidate genes, specifically, PP2A and UBC, were ranked higher as compared to the other traditional reference genes. In general, Tubulin showed the most variable expression and should be avoided as a reference gene. Conclusions: Reference genes evaluated as suitable in experiments with Arabidopsis thaliana were stably expressed in roses under various experimental conditions. In most cases, these genes outperformed conventional reference genes, such as EF1-α and Tubulin. We identified PP2A, SAND and UBC as suitable reference genes, which in different combinations may be used for normalisation in expression analyses via qPCR for different rose tissues and stress treatments. However, the vast genetic variation found within the genus Rosa, including differences in ploidy levels, might also influence expression stability of reference genes, so that future research should also consider different genotypes and ploidy levels.
Resumo:
O presente trabalho teve como objetivo determinar quais variáveis dimensionais da folha são mais adequadas para utilização na estimativa da área foliar do antúrio (Anthurium andraeanum), cv. Apalai, por meio de equação de regressão linear, e comparar o desempenho de diferentes funções de regressão obtidas com o uso de aprendizado de máquina (AM). A variável que melhor estimou a área foliar foi o produto das dimensões lineares (comprimento e largura), CxL, sendo a equação proposta Af = 0.9672 *C x L, com coeficiente de determinação (R²) de 0,99. Verificou-se, também, com o uso de AM, que as funções lineares são mais adequadas para a estimação da área foliar dessa espécie vegetal.
Resumo:
International audience
Resumo:
2009
Resumo:
Mealybugs (Hemiptera: Pseudococcidae) are major pests of a wide range of crops and ornamental plants worldwide. Their high degree of morphological similarity makes them difficult to identify and limits their study and management. We aimed to identify a set of markers for the genetic characterization and identification of complexes of taxa in the Pseudococcidae. We surveyed and tested the genetic markers used in previous studies and then identified new markers for particularly relevant genomic regions for which no satisfactory markers were available. We tested all markers on a subset of four taxa distributed worldwide. Five markers were retained after this first screening: two regions of the mitochondrial cytochrome oxidase I gene, 28S-D2, the entire internal transcriber space 2 locus and the rpS15-16S region of the primary mealybug endosymbiont Tremblaya princeps. We then assessed the utility of these markers for the characterization and identification of 239 samples from 43 sites in France and Brazil. The five markers studied (i) successfully distinguished all species identified by morphological examination, (ii) disentangled complexes of species by revealing intraspecific genetic variation and identified a set of closely related taxa for which taxonomic status requires clarification through further studies, and (iii) facilitated the inference of phylogenetic relationships between the characterized taxa.
Resumo:
Mediterranean species are popular landscape plants in the UK and well suited to the predicted climate change scenarios of hotter, drier summers. What is less clear is how these species will respond to the more unpredictable rainfall patterns also anticipated, where soil water-logging may become more prevalent, especially in urban environments where soil sealing can restrict drainage. Pot experiments on flooding of four Mediterranean species (Cistus × hybridus, Lavandula angustifolia ‘Munstead’, Salvia officinalis and Stachys byzantina) showed that the effects of waterlogging were only severe when the temperature was high and flooding prolonged. All plants survived the flooding in winter, but during the summer a 17-day flood resulted in the death of 30-40% of the Salvia officinalis and Cistus × hybridus. To examine the response of roots to oxygen deprivation over a range of conditions from total absence of oxygen (anoxia), low oxygen (hypoxia) and full aeration, rooted cuttings of Salvia officinalis were grown in a hydroponic-based system and mixtures of oxygen and nitrogen gases bubbled through the media. Anoxia was found to reduce root development dramatically. When the plants were subjected to a period of hypoxia they responded by increasing the production of lateral roots close to the surface thus enabling them to acclimate to subsequent anoxia. This greatly increased their chances of survival.
Resumo:
When deer populations become locally overabundant, browsing of ornamental and agronomic plants negatively affects plant establishment, survival, and productivity. Milorganite® is a slow-release, organic fertilizer produced from human sewage. We tested Milorganite® as a deer repellent on chrysanthemums (Chrysanthemums morifolium) in an urban/suburban environment, and soybeans (Gycine max) in a rural agriculture environment. Six beds of chrysanthemums at two sites were monitored for 28 to 35 days. Treatment plants received a top dressing of 104 grams of Milorganite® (1120.9 kg/ha). Milorganite® treated plants had more (P < 0.001) terminal buds and achieved greater height (P < 0.002) compared to controls at one site, however damage observed was similar at the second site. In a second experiment, 0.2-ha plots of soybeans (Glycine max) were planted on five rural properties in northeastern Georgia and monitored for ≥ 30 days. Treated areas received 269 kg/ha of Milorganite®. In 4 of 5 sites, Milorganite® delayed browsing on treated plants from 1 week to > 5 weeks post-planting. Duration of the protection appeared to be related to the difference in deer density throughout most of the study areas. Results of this study indicate Milorganite® has potential use as a deer repellent.
Resumo:
Includes index.
Resumo:
"With this were issued in portions : 'The auctarium of the Botanic garden', the 'Floral register','A dictionary of English-Latin terms'...and 'The fruitist'." - British mus.(Nat. hist.) Catalogue.
Resumo:
Mode of access: Internet.
Resumo:
Title from vol. t.p.