982 resultados para Organic matrix


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix-bound phosphine (PH3), a new form of phosphorus, was found in sediment of Jiaozhou Bay in December 2001. Concentration and distribution of PH3 in different layers of sediment with different stations were analyzed. The results show that PH3 concentrations are various with different layers and different stations. PH3 concentrations in the bottom layer of sediment (20-30 cm) are usually higher than those in the surface layer (0-4 cm). The highest PH3 concentration in our investigation reaches 685 ng/kg (dry), which is much higher than those in terrestrial paddy soil, marsh and landfill that have been reported up to now. The correlation analysis indicates that there is no apparent correlation between the concentrations of PH3 and inorganic phosphorus in sediment. However, the correlation between the concentrations of phosphine and organic phosphorus in the bottom layer of sediment is remarkable (R-2=0.83). It is mainly considered that PH3 in sediment of Jiaozhou Bay is produced from the decomposition of organic phosphorus in the anaerobic condition, and so PH3 concentrations are related to organic phosphorus concentration and anaerobic environment in sediment. The discovery of PH3 in sediment will give people some new ideas on the mechanisms of phosphorus supplement and biogeochemical cycle in Jiaozhou Bay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Matrix-bound phosphine (MBP) concentrations in surface sediments collected from 37 stations along the coast of China in 2006 are reported. MBP was found in all samples and the average concentration was 6.30 ng kg(-1) dry weight (dw). The distribution of MBP showed certain spatial variation characteristics with high MBP concentrations at stations near to the coast. The average concentrations of MBP in the northern Yellow Sea (NYS), the southern Yellow Sea (SYS), the northern area of East China Sea (NECS), the southern area of East China Sea (SECS), and South China Sea (SCS) were 5.57 +/- 3.78, 3.78 +/- 2.81, 5.27 +/- 3.07, 5.48 +/- 4.05 and 13.52 +/- 7.86 ng kg(-1) dw. respectively. The correlations between MBP and influencing factors, such as the sedimentary environmental characteristics (sediment type, the grain size, contents of phosphorous, organic matters and redox potential) and the aquatic environmental characteristics (temperature, salinity, depth and hydrodynamics) were studied. The results indicated that MBP was strongly influenced by various factors, such as total phosphorus (TP), organic phosphorus (OP), organic carbon (OC), the grain size and hydrodynamics, all of which not only offered reasonable interpretations for the distribution characteristics of MBP but also provided evidence to support the viewpoint that phosphine originated from OP decomposition. This work is the first comprehensive study of the distribution of MBP along the coast of China and its relationships with environmental factors which will lead to a better understanding of the phosphorus (P) biogeochemical cycle in the sea. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment is commonly considered as a source of phosphine, which is a highly toxic and reactive atmospheric trace gas. This study aims to investigate the seasonal and spatial distribution of matrix-bound phosphine (MBP) and its relationship with the environment in the Changjiang River Estuary. A total of 43 surface sediments were collected in four seasons of 2006, and concentrations of MBP and relative environmental factors were analyzed. MBP ranged from 1.93 to 94.86 ng kg(-1) dry weight (dw) with an average concentration of 17.14 ng kg(-1) dw. The concentrations of MBP in the tipper estuary were, higher than those in the lower estuary, which could be attributed to greater pollutant inputs in the upper estuary. The concentrations of MBP also varied with season, with November > August > May > February. Significant correlations existed between MBP and total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (W), organic carbon (OC), total nitrogen (TN), the grain size, and redox potential (Eh), suggesting that these sedimentary environmental characteristics played an important role in controlling the MBP levels in the sediments. Notably, there were positive linear relationships between the concentrations of soluble reactive phosphorus (SRP), TP, and chlorophyll a (Chl a) in bottom water and MBP in sediments. These relationships might be very complicated and need further exploration. This work is the first comprehensive study of the seasonal and spatial distribution of MBP in sediments and its relationships with environmental factors in a typical estuary, and will lead to deeper understanding of the phosphorus (P) biogeochemical cycle. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel hybrid organic-inorganic silica-based monolithic column possessing phenyl ligands for reversed-phase (RP) capillary electrochromatography (CEC) is described. The monolithic stationary phase was prepared by in situ co-condensation of tetraethoxysilane (TEOS) with phenyltriethoxysilane (PTES) via a two-step catalytic sol-gel procedure to introduce phenyl groups distributed throughout the silica matrix for chromatographic interaction. The hydrolysis and condensation reactions of precursors were chemically controlled through pH variation by adding hydrochloric acid and dodecylamine, respectively. The structural property of the monolithic column can be easily tailored through adjusting the composition of starting sol solution. The effect of PTES/TEOS ratios on the morphology of the created stationary phases was investigated. A variety of neutral and basic analytes were used to evaluate the column performance. The CEC columns exhibited typical RP chromatographic retention mechanism for neutral compounds and had improved peak shape for basic solutes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The classical picture of the hydrophobic stabilization of proteins invokes a resemblance between the protein interior and nonpolar solvents, but the extent to which this is the case has often been questioned. The protein interior is believed to be at least as tightly packed as organic crystals, and was shown to have very low compressibility. There is also evidence that these properties are not uniform throughout the protein, and conflicting views exist on the nature of sidechain packing and on its influence on the properties of the protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins and humic acids are common constituents of waste water. Latex colloids (colloids) acted as surrogates for microorganisms in multiple pulse dynamic column experiments (MPEs) that permitted colloid mobility to be quantified before and after the injection of either BSA (a protein), or Suwannee River humic acid (SRHA).
At low OM coverage colloid breakthrough curves demonstrated both BSA and SRHA reduced colloid deposition rates, but did not affect colloid irreversible deposition mechanisms. By contrast, high levels of SRHA surface coverage not only further reduced the matrix’s ability to attenuate colloids, but also resulted in reversible adsorption of a significant fraction of colloids deposited. Modelling of colloid responses using random sequential adsorption modelling suggested that 1 microgram of SRHA had the same effect as the deposition of 5.90±0.14 x109 colloids; the model suggested that adsorption of the same mass of BSA was equivalent to the deposition of between 7.1x108 and 2.3x109 colloids.
Colloid responses in MPEs where BSA coverage of colloid deposition sites approached saturation demonstrated the sand matrix remained capable of adsorbing colloids. However, in contrast to responses observed in MPEs at low surface coverage, continued colloid injection showed that the sand’s attenuation capacity increased with time, i.e. colloid concentrations declined as more were deposited (filter ripening).
Importance: Study results highlight the contrasting responses that may arise due to the interactions between colloids and OM in porous media. Results not only underscore that colloids can interact differently with various forms of deposited OM, but also that a single type of OM may generate dramatically different responses depending on the degree of surface coverage. The MPE method provides a means of quantifying the influence of OM on microorganism mobility in porous media such as filter beds, which may be used for either drinking water treatment or waste water treatment. In the wider environment study findings have potential to allow more confident predictions of the mobility of sewage derived pathogens discharging to groundwater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As is now well established, a first order expansion of the Hohenberg-Kohn total energy density functional about a trial input density, namely, the Harris-Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energy and electron density matrix need to be calculated self consistently and from this functional one can derive a charge self consistent tight binding theory. In this paper we have used this to describe a polarizable ion tight binding model which has the benefit of treating charge transfer in point multipoles. This admits a ready description of ionic polarizability and crystal field splitting. It is necessary in constructing such a model to find a number of parameters that mimic their more exact counterparts in the density functional theory. We describe in detail how this is done using a combination of intuition, exact analytical fitting, and a genetic optimization algorithm. Having obtained model parameters we show that this constitutes a transferable scheme that can be applied rather universally to small and medium sized organic molecules. We have shown that the model gives a good account of static structural and dynamic vibrational properties of a library of molecules, and finally we demonstrate the model's capability by showing a real time simulation of an enolization reaction in aqueous solution. In two subsequent papers, we show that the model is a great deal more general in that it will describe solvents and solid substrates and that therefore we have created a self consistent quantum mechanical scheme that may be applied to simulations in heterogeneous catalysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Preferential flow and transport through macropores affect plant water use efficiency and enhance leaching of agrochemicals and the transport of colloids, thereby increasing the risk for contamination of groundwater resources. The effects of soil compaction, expressed in terms of bulk density (BD), and organic carbon (OC) content on preferential flow and transport were investigated using 150 undisturbed soil cores sampled from 15 × 15–m grids on two field sites. Both fields had loamy textures, but one site had significantly higher OC content. Leaching experiments were conducted in each core by applying a constant irrigation rate of 10 mm h−1 with a pulse application of tritium tracer. Five percent tritium mass arrival times and apparent dispersivities were derived from each of the tracer breakthrough curves and correlated with texture, OC content, and BD to assess the spatial distribution of preferential flow and transport across the investigated fields. Soils from both fields showed strong positive correlations between BD and preferential flow. Interestingly, the relationships between BD and tracer transport characteristics were markedly different for the two fields, although the relationship between BD and macroporosity was nearly identical. The difference was likely caused by the higher contents of fines and OC at one of the fields leading to stronger aggregation, smaller matrix permeability, and a more pronounced pipe-like pore system with well-aligned macropores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical absorption and emission spectral studies of free and metal naphthalocyanine doped borate glass matrix are reported for the first time. Absorption spectra recorded in the UV- VIS-NIR region show the characteristic absorption bands, namely, the B-band and Q-band of the naphthalocyanine (Nc) molecule. Some of the important spectral parameters, namely, the optical absorption coefficient (α), molar extinction coefficient (ε) and absorption cross section (σa) of the principal absorption transitions are determined. Optical band gap (Eg) of the materials evaluated from the functional dependence of absorption coefficient on photon energy lies in the range 1.6 eV≤Eg≤2.1 eV. All fluorescence spectra except that of EuNc consist of an intense band in the 765 nm region corresponding to the excitation of Q-band. In EuNc the maximum fluorescence intensity band is observed at 824 nm. The intensity of the principal fluorescence band is maximum in ZnNc, whereas it is minimum in H2Nc. Radiative parameters of the principal fluorescence transitions corresponding to the Q-band excitation are also reported for the naphthalocyanine and phthalocyanine based matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioaccessibility tests can be used to improve contaminated land risk assessments. For organic pollutants a ‘sink’ is required within these tests to better mimic their desorption under the physiological conditions prevailing in the intestinal tract, where a steep diffusion gradient for the removal of organic pollutants from the soil matrix would exist. This is currently ignored in most PBET systems. By combining the CEPBET bioaccessibility test with an infinite sink, the removal of PAH from spiked solutions was monitored. Less than 10% of spiked PAH remained in the stomach media after 1 h, 10% by 4 h in the small intestine compartment and c.15% after 16 h in the colon. The addition of the infinite sink increased bioaccessibility estimates for field soils by a factor of 1.2–2.8, confirming its importance for robust PBET tests. TOC or BC were not the only factors controlling desorption of the PAH from the soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioaccessibility studies have been widely used as a research tool to determine the potential human exposure to ingested contaminants. More recently they have been practically applied for soil borne toxic elements. This paper reviews the application of bioaccessibility tests across a range of organic pollutants and contaminated matrices. Important factors are reported to be: the physiological relevance of the test, the components in the gut media, the size fraction chosen for the test and whether it contains a sorptive sink. The bioaccessibility is also a function of the composition of the matrix (e.g. organic carbon content of soils) and the physico-chemical characteristics of the pollutant under test. Despite the widespread use of these tests, there are a large number of formats used and very few validation studies with animal models. We propose a unified format for a bioaccessibility test for organic pollutants. The robustness of this test should first be confirmed through inter laboratory comparison, then tested in-vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nd3+-based organic/inorganic hybrids have potential application in the field of integrated optics. Attractive sol-gel derived di-urea and di-urethane cross-linked poly (oxyethylene) (POE)/siloxane hybrids (di-ureasils and di-urethanesils, respectively) doped with neodymium triflate (Nd(CF3SO3)(3)) were examined by Fourier transform mid-infrared (FT-IR), Raman (FT-Raman), Si-29 magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and photoluminescence spectroscopies, and small-angle X-ray scattering (SAXS). The goals of this work were to determine which cation coordinating site of the host matrix (ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the photoluminescence properties. The main conclusion derived from this study is that the hydrogen-bonded associations formed throughout the materials play a major role in the hybrids nanostructure and photoluminescence properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation of the antibiotic tetracycline (TC) by the photo-Fenton process was evaluated under black-light and solar irradiation. The influences of iron source (Fe(NO3)(3) or ferrioxalate), hydrogen peroxide and matrix (pure water, surface water and a sewage treatment plant effluent-STP) were evaluated. Under black-light irradiation, TC degradation was favored in the presence of Fe(NO3)(3), achieving total degradation after 1 min irradiation, while under solar light the use of ferrioxalate favors the degradation. Nevertheless, no significant difference in total organic carbon removal was observed between these two iron sources, achieving a residual concentration of around 5 mg L-1 under black-light and 2 mg L-1 under solar light irradiation. No decrease of the degradation efficiency relative to pure water was observed when TC was irradiated in a sample of surface water, under either black-light or solar irradiation. However, lower efficiency was obtained under black-light when TC was present in a sample of STP effluent, indicating the interference of the constituents of this sample on the overall efficiency of the process. on the other hand, under solar irradiation in the presence of ferrioxalate, no influence of the matrix was observed, even in the sample of STP effluent, achieving total degradation of TC in 1.5 min. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)