934 resultados para Optimizing Compilation
Resumo:
As exploration of our solar system and outerspace move into the future, spacecraft are being developed to venture on increasingly challenging missions with bold objectives. The spacecraft tasked with completing these missions are becoming progressively more complex. This increases the potential for mission failure due to hardware malfunctions and unexpected spacecraft behavior. A solution to this problem lies in the development of an advanced fault management system. Fault management enables spacecraft to respond to failures and take repair actions so that it may continue its mission. The two main approaches developed for spacecraft fault management have been rule-based and model-based systems. Rules map sensor information to system behaviors, thus achieving fast response times, and making the actions of the fault management system explicit. These rules are developed by having a human reason through the interactions between spacecraft components. This process is limited by the number of interactions a human can reason about correctly. In the model-based approach, the human provides component models, and the fault management system reasons automatically about system wide interactions and complex fault combinations. This approach improves correctness, and makes explicit the underlying system models, whereas these are implicit in the rule-based approach. We propose a fault detection engine, Compiled Mode Estimation (CME) that unifies the strengths of the rule-based and model-based approaches. CME uses a compiled model to determine spacecraft behavior more accurately. Reasoning related to fault detection is compiled in an off-line process into a set of concurrent, localized diagnostic rules. These are then combined on-line along with sensor information to reconstruct the diagnosis of the system. These rules enable a human to inspect the diagnostic consequences of CME. Additionally, CME is capable of reasoning through component interactions automatically and still provide fast and correct responses. The implementation of this engine has been tested against the NEAR spacecraft advanced rule-based system, resulting in detection of failures beyond that of the rules. This evolution in fault detection will enable future missions to explore the furthest reaches of the solar system without the burden of human intervention to repair failed components.
Resumo:
The performances of high-speed network communications frequently rest with the distribution of data-stream. In this paper, a dynamic data-stream balancing architecture based on link information is introduced and discussed firstly. Then the algorithms for simultaneously acquiring the passing nodes and links of a path between any two source-destination nodes rapidly, as well as a dynamic data-stream distribution planning are proposed. Some related topics such as data fragment disposal, fair service, etc. are further studied and discussed. Besides, the performance and efficiency of proposed algorithms, especially for fair service and convergence, are evaluated through a demonstration with regard to the rate of bandwidth utilization. Hoping the discussion presented here can be helpful to application developers in selecting an effective strategy for planning the distribution of data-stream.
Resumo:
We compare a broad range of optimal product line design methods. The comparisons take advantage of recent advances that make it possible to identify the optimal solution to problems that are too large for complete enumeration. Several of the methods perform surprisingly well, including Simulated Annealing, Product-Swapping and Genetic Algorithms. The Product-Swapping heuristic is remarkable for its simplicity. The performance of this heuristic suggests that the optimal product line design problem may be far easier to solve in practice than indicated by complexity theory.
Compilation of documents for the development of a state of art of the investigation of perdurability
Resumo:
A través del estudio y la investigación basados en bibliografía de diversas nacionalidades que data desde la década de los setenta hasta la actualidad, ha sido posible analizar la tendencia académica de las investigaciones acerca la Perdurabilidad. Esta recolección de estudios es una fuente de información para todos aquellos que deseen tener un entendimiento más profundo acerca de la teoría que sostiene el concepto de Perdurabilidad. A lo largo de esta investigación, el lector encontrará un conjunto de varios autores de distintas nacionalidades que abordaron el tema de la Perdurabilidad bajo alguna de sus concepciones (longevidad, resistencia, supervivencia); lo que permite tener una visión más amplia acerca de la importancia de ciertos estudios de acuerdo a su origen y contexto cultural. Es importante resaltar que esta investigación es netamente teórica con el propósito de aclarar el concepto de Perdurabilidad y facilitar futuras investigaciones acerca de este tema
Compilation of Texts I. Association of the Overseas Countries and Territories. June 1976 - July 1977
Resumo:
The efficiency of N utilization in ruminants is typically low (around 25%) and highly variable (10% to 40%) compared with the higher efficiency of other production animals. The low efficiency has implications for the production performance and environment. Many efforts have been devoted to improving the efficiency of N utilization in ruminants, and while major improvements in our understanding of N requirements and metabolism have been achieved, the overall efficiency remains low. In general, maximal efficiency of N utilization will only occur at the expense of some losses in production performance. However, optimal production and N utilization may be achieved through the understanding of the key mechanisms involved in the control of N metabolism. Key factors in the rumen include the efficiency of N capture in the rumen (grams of bacterial N per grams of rumen available N) and the modification of protein degradation. Traditionally, protein degradation has been modulated by modifying the feed (physical and chemical treatments). Modifying the rumen microflora involved in peptide degradation and amino acid deamination offers an alternative approach that needs to be addressed. Current evidence indicates that in typical feeding conditions there is limited net recycling of N into the rumen (blood urea-N uptake minus ammonia-N absorption), but understanding the factors controlling urea transport across the rumen wall may reverse the balance to take advantage of the recycling capabilities of ruminants. Finally, there is considerable metabolism of amino acids (AA) in the portal-drained viscera (PDV) and liver. However, most of this process occurs through the uptake of AA from the arterial blood and not during the ‘absorptive’ process. Therefore, AA are available to the peripheral circulation and to the mammary gland before being used by PDV and the liver. In these conditions, the mammary gland plays a key role in determining the efficiency of N utilization because the PDV and liver will use AA in excess of those required by the mammary gland. Protein synthesis in the mammary gland appears to be tightly regulated by local and systemic signals. The understanding of factors regulating AA supply and absorption in the mammary gland, and the synthesis of milk protein should allow the formulation of diets that increase total AA uptake by the mammary gland and thus reduce AA utilization by PDV and the liver. A better understanding of these key processes should allow the development of strategies to improve the efficiency of N utilization in ruminants.
Resumo:
The layer-by-layer deposition of polymers onto surfaces allows the fabrication of multilayered materials for a wide range of applications, from drug delivery to biosensors. This work describes the analysis of complex formation between poly(acrylic acid) and methylcellulose in aqueous solutions using Biacore, a surface plasmon resonance analytical technique, traditionally used to examine biological interactions. This technique characterized the layer-by-layer deposition of these polymers on the surface of a Biacore sensor chip. The results were subsequently used to optimize the experimental conditions for sequential layer deposition on glass slides. The role of the solution pH and poly(acrylic acid) molecular weight on the formation of interpolymer multilayered coatings was researched, and showed that the optimal deposition of the polymer complexes was achieved at pHs ≤2.5 with a poly(acrylic acid) molecular weight of 450 kDa.