997 resultados para Optical spectrum


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chalcogenides are chemical compounds with at least one of the following three chemical elements: Sulfur (S), Selenium (Sn), and Tellurium (Te). As opposed to other materials, chalcogenide atomic arrangement can quickly and reversibly inter-change between crystalline, amorphous and liquid phases. Therefore they are also called phase change materials. As a results, chalcogenide thermal, optical, structural, electronic, electrical properties change pronouncedly and significantly with the phase they are in, leading to a host of different applications in different areas. The noticeable optical reflectivity difference between crystalline and amorphous phases has allowed optical storage devices to be made. Their very high thermal conductivity and heat fusion provided remarkable benefits in the frame of thermal energy storage for heating and cooling in residential and commercial buildings. The outstanding resistivity difference between crystalline and amorphous phases led to a significant improvement of solid state storage devices from the power consumption to the re-writability to say nothing of the shrinkability. This work focuses on a better understanding from a simulative stand point of the electronic, vibrational and optical properties for the crystalline phases (hexagonal and faced-centered cubic). The electronic properties are calculated implementing the density functional theory combined with pseudo-potentials, plane waves and the local density approximation. The phonon properties are computed using the density functional perturbation theory. The phonon dispersion and spectrum are calculated using the density functional perturbation theory. As it relates to the optical constants, the real part dielectric function is calculated through the Drude-Lorentz expression. The imaginary part results from the real part through the Kramers-Kronig transformation. The refractive index, the extinctive and absorption coefficients are analytically calculated from the dielectric function. The transmission and reflection coefficients are calculated using the Fresnel equations. All calculated optical constants compare well the experimental ones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and characterization of biomolecule sensor formats based on the optical technique Surface Plasmon Resonance (SPR) Spectroscopy and electrochemical methods were investigated. The study can be divided into two parts of different scope. In the first part new novel detection schemes for labeled targets were developed on the basis of the investigations in Surface-plamon Field Enhanced Spectroscopy (SPFS). The first one is SPR fluorescence imaging formats, Surface-plamon Field Enhanced Fluorescence Microscopy (SPFM). Patterned self assembled monolayers (SAMs) were prepared and used to direct the spatial distribution of biomolecules immobilized on surfaces. Here the patterned monolayers would serve as molecular templates to secure different biomolecules to known locations on a surface. The binding processed of labeled target biomolecules from solution to sensor surface were visually and kinetically recorded by the fluorescence microscope, in which fluorescence was excited by the evanescent field of propagating plasmon surface polaritons. The second format which also originates from SPFS technique, Surface-plamon Field Enhanced Fluorescence Spectrometry (SPFSm), concerns the coupling of a fluorometry to normal SPR setup. A spectrograph mounted in place of photomultiplier or microscope can provide the information of fluorescence spectrum as well as fluorescence intensity. This study also firstly demonstrated the analytical combination of surface plasmon enhanced fluorescence detection with analyte tagged by semiconducting nano- crystals (QDs). Electrochemically addressable fabrication of DNA biosensor arrays in aqueous environment was also developed. An electrochemical method was introduced for the directed in-situ assembly of various specific oligonucleotide catcher probes onto different sensing elements of a multi-electrode array in the aqueous environment of a flow cell. Surface plasmon microscopy (SPM) is utilized for the on-line recording of the various functionalization steps. Hybridization reactions between targets from solution to the different surface-bound complementary probes are monitored by surface-plasmon field-enhanced fluorescence microscopy (SPFM) using targets that are either labeled with organic dyes or with semiconducting quantum dots for color-multiplexing. This study provides a new approach for the fabrication of (small) DNA arrays and the recording and quantitative evaluation of parallel hybridization reactions. In the second part of this work, the ideas of combining the SP optical and electrochemical characterization were extended to tethered bilayer lipid membrane (tBLM) format. Tethered bilayer lipid membranes provide a versatile model platform for the study of many membrane related processes. The thiolipids were firstly self-assembled on ultraflat gold substrates. Fusion of the monolayers with small unilamellar vesicles (SUVs) formed the distal layer and the membranes thus obtained have the sealing properties comparable to those of natural membranes. The fusion could be monitored optically by SPR as an increase in reflectivity (thickness) upon formation of the outer leaflet of the bilayer. With EIS, a drop in capacitance and a steady increase in resistance could be observed leading to a tightly sealing membrane with low leakage currents. The assembly of tBLMs and the subsequent incorporation of membrane proteins were investigated with respect to their potential use as a biosensing system. In the case of valinomycin the potassium transport mediated by the ion carrier could be shown by a decrease in resistance upon increasing potassium concentration. Potential mediation of membrane pores could be shown for the ion channel forming peptide alamethicin (Alm). It was shown that at high positive dc bias (cis negative) Alm channels stay at relatively low conductance levels and show higher permeability to potassium than to tetramethylammonium. The addition of inhibitor amiloride can partially block the Alm channels and results in increase of membrane resistance. tBLMs are robust and versatile model membrane architectures that can mimic certain properties of biological membranes. tBLMs with incorporated lipopolysaccharide (LPS) and lipid A mimicking bacteria membranes were used to probe the interactions of antibodies against LPS and to investigate the binding and incorporation of the small antimicrobial peptide V4. The influence of membrane composition and charge on the behavior of V4 was also probed. This study displays the possibility of using tBLM platform to record and valuate the efficiency or potency of numerous synthesized antimicrobial peptides as potential drug candidates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efficient coupling of light to quantum emitters, such as atoms, molecules or quantum dots, is one of the great challenges in current research. The interaction can be strongly enhanced by coupling the emitter to the eva-nescent field of subwavelength dielectric waveguides that offer strong lateral confinement of the guided light. In this context subwavelength diameter optical nanofibers as part of a tapered optical fiber (TOF) have proven to be powerful tool which also provide an efficient transfer of the light from the interaction region to an optical bus, that is to say, from the nanofiber to an optical fiber. rnAnother approach towards enhancing light–matter interaction is to employ an optical resonator in which the light is circulating and thus passes the emitters many times. Here, both approaches are combined by experi-mentally realizing a microresonator with an integrated nanofiber waist. This is achieved by building a fiber-integrated Fabry-Pérot type resonator from two fiber Bragg grating mirrors with a stop-band near the cesium D2-line wavelength. The characteristics of this resonator fulfill the requirements of nonlinear optics, optical sensing, and cavity quantum electrodynamics in the strong-coupling regime. Together with its advantageous features, such as a constant high coupling strength over a large volume, tunability, high transmission outside the mirror stop band, and a monolithic design, this resonator is a promising tool for experiments with nanofiber-coupled atomic ensembles in the strong-coupling regime. rnThe resonator's high sensitivity to the optical properties of the nanofiber provides a probe for changes of phys-ical parameters that affect the guided optical mode, e.g., the temperature via the thermo-optic effect of silica. Utilizing this detection scheme, the thermalization dynamics due to far-field heat radiation of a nanofiber is studied over a large temperature range. This investigation provides, for the first time, a measurement of the total radiated power of an object with a diameter smaller than all absorption lengths in the thermal spectrum at the level of a single object of deterministic shape and material. The results show excellent agreement with an ab initio thermodynamic model that considers heat radiation as a volumetric effect and that takes the emitter shape and size relative to the emission wavelength into account. Modeling and investigating the thermalization of microscopic objects with arbitrary shape from first principles is of fundamental interest and has important applications, such as heat management in nano-devices or radiative forcing of aerosols in Earth's climate system. rnUsing a similar method, the effect of the TOF's mechanical modes on the polarization and phase of the fiber-guided light is studied. The measurement results show that in typical TOFs these quantities exhibit high-frequency thermal fluctuations. They originate from high-Q torsional oscillations that couple to the nanofiber-guided light via the strain-optic effect. An ab-initio opto-mechanical model of the TOF is developed that provides an accurate quantitative prediction for the mode spectrum and the mechanically induced polarization and phase fluctuations. These high-frequency fluctuations may limit the ultimate ideality of fiber-coupling into photonic structures. Furthermore, first estimations show that they may currently limit the storage time of nanofiber-based atom traps. The model, on the other hand, provides a method to design TOFs with tailored mechanical properties in order to meet experimental requirements. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy transfer between the interacting waves in a distributed Brillouin sensor can result in a distorted measurement of the local Brillouin gain spectrum, leading to systematic errors. It is demonstrated that this depletion effect can be precisely modelled. This has been validated by experimental tests in an excellent quantitative agreement. Strict guidelines can be enunciated from the model to make the impact of depletion negligible, for any type and any length of fiber. (C) 2013 Optical Society of America

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable energy is growing in demand, and thus the the manufacture of solar cells and photovoltaic arrays has advanced dramatically in recent years. This is proved by the fact that the photovoltaic production has doubled every 2 years, increasing by an average of 48% each year since 2002. Covering the general overview of solar cell working, and its model, this thesis will start with the three generations of photovoltaic solar cell technology, and move to the motivation of dedicating research to nanostructured solar cell. For the current generation solar cells, among several factors, like photon capture, photon reflection, carrier generation by photons, carrier transport and collection, the efficiency also depends on the absorption of photons. The absorption coefficient,α, and its dependence on the wavelength, λ, is of major concern to improve the efficiency. Nano-silicon structures (quantum wells and quantum dots) have a unique advantage compared to bulk and thin film crystalline silicon that multiple direct and indirect band gaps can be realized by appropriate size control of the quantum wells. This enables multiple wavelength photons of the solar spectrum to be absorbed efficiently. There is limited research on the calculation of absorption coefficient in nano structures of silicon. We present a theoretical approach to calculate the absorption coefficient using quantum mechanical calculations on the interaction of photons with the electrons of the valence band. One model is that the oscillator strength of the direct optical transitions is enhanced by the quantumconfinement effect in Si nanocrystallites. These kinds of quantum wells can be realized in practice in porous silicon. The absorption coefficient shows a peak of 64638.2 cm-1 at = 343 nm at photon energy of ξ = 3.49 eV ( = 355.532 nm). I have shown that a large value of absorption coefficient α comparable to that of bulk silicon is possible in silicon QDs because of carrier confinement. Our results have shown that we can enhance the absorption coefficient by an order of 10, and at the same time a nearly constant absorption coefficient curve over the visible spectrum. The validity of plots is verified by the correlation with experimental photoluminescence plots. A very generic comparison for the efficiency of p-i-n junction solar cell is given for a cell incorporating QDs and sans QDs. The design and fabrication technique is discussed in brief. I have shown that by using QDs in the intrinsic region of a cell, we can improve the efficiency by a factor of 1.865 times. Thus for a solar cell of efficiency of 26% for first generation solar cell, we can improve the efficiency to nearly 48.5% on using QDs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embedded siloxane polymer waveguides have shown promising results for use in optical backplanes. They exhibit high temperature stability, low optical absorption, and require common processing techniques. A challenging aspect of this technology is out-of-plane coupling of the waveguides. A multi-software approach to modeling an optical vertical interconnect (via) is proposed. This approach utilizes the beam propagation method to generate varied modal field distribution structures which are then propagated through a via model using the angular spectrum propagation technique. Simulation results show average losses between 2.5 and 4.5 dB for different initial input conditions. Certain configurations show losses of less than 3 dB and it is shown that in an input/output pair of vias, average losses per via may be lower than the targeted 3 dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metamaterials are artificial materials that exhibit properties, such as negative index of refraction, that are not possible through natural materials. Due to many potential applications of negative index metamaterials, significant progress in the field has been observed in the last decade. However, achieving negative index at visible frequencies is a challenging task. Generally, fishnet metamaterials are considered as a possible route to achieve negative index in the visible spectrum. However, so far no metamaterial has been demonstrated to exhibit simultaneously negative permittivity and permeability (double-negative) beyond the red region of the visible spectrum. This study is mainly focused on achieving higher operating frequency for low-loss, double-negative metamaterials. Two double-negative metamaterials have been proposed to operate at highest reported frequencies. The first proposed metamaterial is based on the interaction of surface plasmon polaritons of a thin metal film with localized surface plasmons of a metallic array placed close to the thin film. It is demonstrated that the metamaterial can easily be scaled to operate at any frequency in the visible spectrum as well as possibly to the ultraviolet spectrum. Furthermore, the underlying physical phenomena and possible future extensions of the metamaterial are also investigated. The second proposed metamaterial is a modification to the so-called fishnet metamaterial. It has been demonstrated that this ‘modified fishnet’ exhibits two double-negative bands in the visible spectrum with highest operating frequency in the green region with considerably high figure of merit. In contrast to most of the fishnet metamaterials proposed in the past, behavior of this modified fishnet is independent of polarization of the incident field. In addition to the two negative index metamaterials proposed in this study, the use of metamaterial as a spacer, named as metaspacer, is also investigated. In contrast to naturally available dielectric spacers used in microfabrication, metaspacers can be realized with any (positive or negative) permittivity and permeability. As an example, the use of a negative index metaspacer in place of the dielectric layer in a fishnet metamaterial is investigated. It is shown that fishnet based on negative index metaspacer gives many improved optical properties over the conventional fishnet such as wider negative index band, higher figure of merit, higher optical transmission and stronger magnetic response. In addition to the improved properties, following interesting features were observed in the metaspacer based fishnet metamaterial. At the resonance frequency, the shape of the permeability curve was ‘inverted’ as compared to that for conventional fishnet metamaterial. Furthermore, dependence of the resonance frequency on the fishnet geometry was also reversed. Moreover, simultaneously negative group and phase velocities were observed in the low-loss region of the metaspacer based fishnet metamaterial. Due to interesting features observed using metaspacer, this study will open a new horizon for the metamaterial research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scintillation and luminescence properties of pure CsBa2I5 and CsBa2I5 doped with 0.5% Eu and 5% Eu were studied between 78 K and 600 K. Single crystals were grown by the vertical Bridgman method from the melt. CsBa2I5:5% Eu showed a light yield of 80,000 photons/MeV, an energy resolution of 2.3% for the 662 key full absorption peak, and an excellent proportional response. Two broad emission bands centered at 400 nm and 600 nm were observed in the radioluminescence spectrum of pure CsBa2I5. The Eu2+ 5d-4f emission band was observed at 430 nm. The radiative lifetime of the Eu2+ excited state was determined as 350 ns. With increasing temperature and Eu concentration the Eu2+ emission shifts to longer wavelengths and its decay time lengthens as a result of self-absorption of the Eu2+ emission. Multiple thermoluminescence glow peaks and a sharp decrease of the light yield at temperatures below 200 K were observed and related to the presence of the charge carrier traps in CsBa2I5:Eu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate and characterize multiple evanescent white dot syndrome abnormalities with modern multimodal imaging modalities. METHODS: This retrospective cohort study evaluated fundus photography, fluorescein angiography, indocyanine green angiography, optical coherence tomography, enhanced depth imaging optical coherence tomography, short-wavelength autofluorescence, and near-infrared autofluorescence. RESULTS: Thirty-four multiple evanescent white dot syndrome patients with mean age of 28.7 years were studied (range, 14-49 years). Twenty-six patients were women, and eight were men. Initial mean visual acuity was 0.41 logMAR. Final mean visual acuity was 0.03 logMAR. Fluorescein angiography shows a variable number of mid retinal early fluorescent dots distributed in a wreathlike pattern, which correlate to fundus photography, fundus autofluorescence, and indocyanine green angiography. Indocyanine green angiography imaging shows the dots and also hypofluorescent, deeper, and larger spots, which are occasionally confluent, demonstrating a large plaque of deep retinal hypofluorescence. Optical coherence tomography imaging shows multifocal debris centered at and around the ellipsoid layer, corresponding to the location of spots seen with photography, indocyanine green angiography, and fluorescein angiography. Protrusions of the hyperreflectant material from the ellipsoid layer toward the outer nuclear layer correspond to the location of dots seen with photography, indocyanine green angiography, and fluorescein angiography. CONCLUSION: Multimodal imaging analysis of the retina in patients with multiple evanescent white dot syndrome shows additional features that may help in the diagnosis of the disease and in further understanding its etiology. Multiple evanescent white dot syndrome is predominantly a disease of the outer retina, centered at the ellipsoid zone, but also involving the interdigitation zone and the outer nuclear layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Laser In-Situ Scattering Transmissometer (LISST) was used to collect vertical distribution data of particles from 2.5 to 500 µm in size. The LISST uses a multi-ring detector to measure scattering light of particles from a laser diode. Particles are classified into 32 log-spaced bins and the concentration of each bin is calculated as micro-liters per liter (µl/l). The instrument is rated to a depth of 300 m, and also records temperature and pressure. The sample interval was set to record every second. The LISST was attached to the LOPC frame to conduct casts and allow for particle-size comparisons between the two instruments. The LOPC is rated to a depth of 2000 m, thus a short deployment to a depth of 300 m was first conducted with both instruments. The instruments were then returned to the deck and the LISST removed via a quick release bracket so deep LOPC casts could be continued at a station. Raw LISST size-spectrum data is presented as concentrations for each of the 32 size bins for every second of the cast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of a novel optical design for the high concentration photovoltaics (HPCV) nonimaging concentrator (>500x) that utilizes a built-in spectrum splitting concept is presented. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it. The POE and SOE perform Köhler integration to produce light homogenization on the receiver. The system uses a combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-PointContact (BPC) silicon cell for efficient spectral utilization, and an external confinement technique for recovering the 3J cell’s reflection. A design target of an “equivalent” cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level greater than 500X with a wide acceptance angle of ±1º. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of a novel HCPV nonimaging concentrator with high concentration (>500x) and built-in spectrum splitting concept is presented. It uses the combination of a commercial concentration GaInP/GaInAs/Ge 3J cell and a concentration Back-Point-Contact (BPC) silicon cell for efficient spectral utilization, and external confinement techniques for recovering the 3J cell's reflection. The primary optical element (POE) is a flat Fresnel lens and the secondary optical element (SOE) is a free-form RXI-type concentrator with a band-pass filter embedded in it - Both the POE and SOE performing Köhler integration to produce light homogenization on the receiver. The band-pass filter transmits the IR photons in the 900-1200 nm band to the silicon cell. A design target of an "equivalent" cell efficiency ~46% is predicted using commercial 39% 3J and 26% Si cells. A projected CPV module efficiency of greater than 38% is achievable at a concentration level larger than 500X with a wide acceptance angle of ±1°. A first proof-of concept receiver prototype has been manufactured using a simpler optical architecture (with a lower concentration, ~100x and lower simulated added efficiency), and experimental measurements have shown up to 39.8% 4J receiver efficiency using a 3J cell with a peak efficiency of 36.9%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One presents in this work the study of the interaction between a focused laser beam and Si nanowires (NWs). The NWs heating induced by the laser beam is studied by solving the heat transfer equation by finite element methods (fem). This analysis permits to establish the temperature distribution inside the NW when it is excited by the laser beam. The overheating is dependent on the dimensions of the NW, both the diameter and the length. When performing optical characterization of the NWs using focused laser beams, one has to consider the temperature increase introduced by the laser beam. An important issue concerns the fact that the NWs diameter has subwavelength dimensions, and is also smaller than the focused laser beam. The analysis of the thermal behaviour of the NWs under the excitation with the laser beam permits the interpretation of the Raman spectra of Si NWs, where it is demonstrated that temperature induced by the laser beam play a major role in shaping the Raman spectrum of Si NWs