864 resultados para Operation based method
Resumo:
We present a novel market-based method, inspired by retail markets, for resource allocation in fully decentralised systems where agents are self-interested. Our market mechanism requires no coordinating node or complex negotiation. The stability of outcome allocations, those at equilibrium, is analysed and compared for three buyer behaviour models. In order to capture the interaction between self-interested agents, we propose the use of competitive coevolution. Our approach is both highly scalable and may be tuned to achieve specified outcome resource allocations. We demonstrate the behaviour of our approach in simulation, where evolutionary market agents act on behalf of service providing nodes to adaptively price their resources over time, in response to market conditions. We show that this leads the system to the predicted outcome resource allocation. Furthermore, the system remains stable in the presence of small changes in price, when buyers' decision functions degrade gracefully. © 2009 The Author(s).
Resumo:
We consider a finite state automata based method of solving a system of linear Diophantine equations with coefficients from the set {-1,0,1} and solutions in {0,1}.
Resumo:
The scope of this paper is to present the Pulse Width Modulation (PWM) based method for Active Power (AP) and Reactive Power (RP) measurements as can be applied in Power Meters. Necessarily, the main aim of the material presented is a twofold, first to present a realization methodology of the proposed algorithm, and second to verify the algorithm’s robustness and validity. The method takes advantage of the fact that frequencies present in a power line are of a specific fundamental frequency range (a range centred on the 50 Hz or 60 Hz) and that in case of the presence of harmonics the frequencies of those dominating in the power line spectrum can be specified on the basis of the fundamental. In contrast to a number of existing methods a time delay or shifting of the input signal is not required by the method presented and the time delay by n/2 of the Current signal with respect to the Voltage signal required by many of the existing measurement techniques, does not apply in the case of the PWM method as well.
Resumo:
Objective: Images on food and dietary supplement packaging might lead people to infer (appropriately or inappropriately) certain health benefits of those products. Research on this issue largely involves direct questions, which could (a) elicit inferences that would not be made unprompted, and (b) fail to capture inferences made implicitly. Using a novel memory-based method, in the present research, we explored whether packaging imagery elicits health inferences without prompting, and the extent to which these inferences are made implicitly. Method: In 3 experiments, participants saw fictional product packages accompanied by written claims. Some packages contained an image that implied a health-related function (e.g., a brain), and some contained no image. Participants studied these packages and claims, and subsequently their memory for seen and unseen claims were tested. Results: When a health image was featured on a package, participants often subsequently recognized health claims that—despite being implied by the image—were not truly presented. In Experiment 2, these recognition errors persisted despite an explicit warning against treating the images as informative. In Experiment 3, these findings were replicated in a large consumer sample from 5 European countries, and with a cued-recall test. Conclusion: These findings confirm that images can act as health claims, by leading people to infer health benefits without prompting. These inferences appear often to be implicit, and could therefore be highly pervasive. The data underscore the importance of regulating imagery on product packaging; memory-based methods represent innovative ways to measure how leading (or misleading) specific images can be. (PsycINFO Database Record (c) 2016 APA, all rights reserved)
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
Recent technological developments have made it possible to design various microdevices where fluid flow and heat transfer are involved. For the proper design of such systems, the governing physics needs to be investigated. Due to the difficulty to study complex geometries in micro scales using experimental techniques, computational tools are developed to analyze and simulate flow and heat transfer in microgeometries. However, conventional numerical methods using the Navier-Stokes equations fail to predict some aspects of microflows such as nonlinear pressure distribution, increase mass flow rate, slip flow and temperature jump at the solid boundaries. This necessitates the development of new computational methods which depend on the kinetic theory that are both accurate and computationally efficient. In this study, lattice Boltzmann method (LBM) was used to investigate the flow and heat transfer in micro sized geometries. The LBM depends on the Boltzmann equation which is valid in the whole rarefaction regime that can be observed in micro flows. Results were obtained for isothermal channel flows at Knudsen numbers higher than 0.01 at different pressure ratios. LBM solutions for micro-Couette and micro-Poiseuille flow were found to be in good agreement with the analytical solutions valid in the slip flow regime (0.01 < Kn < 0.1) and direct simulation Monte Carlo solutions that are valid in the transition regime (0.1 < Kn < 10) for pressure distribution and velocity field. The isothermal LBM was further extended to simulate flows including heat transfer. The method was first validated for continuum channel flows with and without constrictions by comparing the thermal LBM results against accurate solutions obtained from analytical equations and finite element method. Finally, the capability of thermal LBM was improved by adding the effect of rarefaction and the method was used to analyze the behavior of gas flow in microchannels. The major finding of this research is that, the newly developed particle-based method described here can be used as an alternative numerical tool in order to study non-continuum effects observed in micro-electro-mechanical-systems (MEMS).
Resumo:
Product quality planning is a fundamental part of quality assurance in manufacturing. It is composed of the distribution of quality aims over each phase in product development and the deployment of quality operations and resources to accomplish these aims. This paper proposes a quality planning methodology based on risk assessment and the planning tasks of product development are translated into evaluation of risk priorities. Firstly, a comprehensive model for quality planning is developed to address the deficiencies of traditional quality function deployment (QFD) based quality planning. Secondly, a novel failure knowledge base (FKB) based method is discussed. Then a mathematical method and algorithm of risk assessment is presented for target decomposition, measure selection, and sequence optimization. Finally, the proposed methodology has been implemented in a web based prototype software system, QQ-Planning, to solve the problem of quality planning regarding the distribution of quality targets and the deployment of quality resources, in such a way that the product requirements are satisfied and the enterprise resources are highly utilized. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
Brain-computer interfaces (BCI) have the potential to restore communication or control abilities in individuals with severe neuromuscular limitations, such as those with amyotrophic lateral sclerosis (ALS). The role of a BCI is to extract and decode relevant information that conveys a user's intent directly from brain electro-physiological signals and translate this information into executable commands to control external devices. However, the BCI decision-making process is error-prone due to noisy electro-physiological data, representing the classic problem of efficiently transmitting and receiving information via a noisy communication channel.
This research focuses on P300-based BCIs which rely predominantly on event-related potentials (ERP) that are elicited as a function of a user's uncertainty regarding stimulus events, in either an acoustic or a visual oddball recognition task. The P300-based BCI system enables users to communicate messages from a set of choices by selecting a target character or icon that conveys a desired intent or action. P300-based BCIs have been widely researched as a communication alternative, especially in individuals with ALS who represent a target BCI user population. For the P300-based BCI, repeated data measurements are required to enhance the low signal-to-noise ratio of the elicited ERPs embedded in electroencephalography (EEG) data, in order to improve the accuracy of the target character estimation process. As a result, BCIs have relatively slower speeds when compared to other commercial assistive communication devices, and this limits BCI adoption by their target user population. The goal of this research is to develop algorithms that take into account the physical limitations of the target BCI population to improve the efficiency of ERP-based spellers for real-world communication.
In this work, it is hypothesised that building adaptive capabilities into the BCI framework can potentially give the BCI system the flexibility to improve performance by adjusting system parameters in response to changing user inputs. The research in this work addresses three potential areas for improvement within the P300 speller framework: information optimisation, target character estimation and error correction. The visual interface and its operation control the method by which the ERPs are elicited through the presentation of stimulus events. The parameters of the stimulus presentation paradigm can be modified to modulate and enhance the elicited ERPs. A new stimulus presentation paradigm is developed in order to maximise the information content that is presented to the user by tuning stimulus paradigm parameters to positively affect performance. Internally, the BCI system determines the amount of data to collect and the method by which these data are processed to estimate the user's target character. Algorithms that exploit language information are developed to enhance the target character estimation process and to correct erroneous BCI selections. In addition, a new model-based method to predict BCI performance is developed, an approach which is independent of stimulus presentation paradigm and accounts for dynamic data collection. The studies presented in this work provide evidence that the proposed methods for incorporating adaptive strategies in the three areas have the potential to significantly improve BCI communication rates, and the proposed method for predicting BCI performance provides a reliable means to pre-assess BCI performance without extensive online testing.
Resumo:
BACKGROUND: The neonatal and pediatric antimicrobial point prevalence survey (PPS) of the Antibiotic Resistance and Prescribing in European Children project (http://www.arpecproject.eu/) aims to standardize a method for surveillance of antimicrobial use in children and neonates admitted to the hospital within Europe. This article describes the audit criteria used and reports overall country-specific proportions of antimicrobial use. An analytical review presents methodologies on antimicrobial use.
METHODS: A 1-day PPS on antimicrobial use in hospitalized children was organized in September 2011, using a previously validated and standardized method. The survey included all inpatient pediatric and neonatal beds and identified all children receiving an antimicrobial treatment on the day of survey. Mandatory data were age, gender, (birth) weight, underlying diagnosis, antimicrobial agent, dose and indication for treatment. Data were entered through a web-based system for data-entry and reporting, based on the WebPPS program developed for the European Surveillance of Antimicrobial Consumption project.
RESULTS: There were 2760 and 1565 pediatric versus 1154 and 589 neonatal inpatients reported among 50 European (n = 14 countries) and 23 non-European hospitals (n = 9 countries), respectively. Overall, antibiotic pediatric and neonatal use was significantly higher in non-European (43.8%; 95% confidence interval [CI]: 41.3-46.3% and 39.4%; 95% CI: 35.5-43.4%) compared with that in European hospitals (35.4; 95% CI: 33.6-37.2% and 21.8%; 95% CI: 19.4-24.2%). Proportions of antibiotic use were highest in hematology/oncology wards (61.3%; 95% CI: 56.2-66.4%) and pediatric intensive care units (55.8%; 95% CI: 50.3-61.3%).
CONCLUSIONS: An Antibiotic Resistance and Prescribing in European Children standardized web-based method for a 1-day PPS was successfully developed and conducted in 73 hospitals worldwide. It offers a simple, feasible and sustainable way of data collection that can be used globally.
Resumo:
In recent years, depth cameras have been widely utilized in camera tracking for augmented and mixed reality. Many of the studies focus on the methods that generate the reference model simultaneously with the tracking and allow operation in unprepared environments. However, methods that rely on predefined CAD models have their advantages. In such methods, the measurement errors are not accumulated to the model, they are tolerant to inaccurate initialization, and the tracking is always performed directly in reference model's coordinate system. In this paper, we present a method for tracking a depth camera with existing CAD models and the Iterative Closest Point (ICP) algorithm. In our approach, we render the CAD model using the latest pose estimate and construct a point cloud from the corresponding depth map. We construct another point cloud from currently captured depth frame, and find the incremental change in the camera pose by aligning the point clouds. We utilize a GPGPU-based implementation of the ICP which efficiently uses all the depth data in the process. The method runs in real-time, it is robust for outliers, and it does not require any preprocessing of the CAD models. We evaluated the approach using the Kinect depth sensor, and compared the results to a 2D edge-based method, to a depth-based SLAM method, and to the ground truth. The results show that the approach is more stable compared to the edge-based method and it suffers less from drift compared to the depth-based SLAM.
Resumo:
As a way to gain greater insights into the operation of online communities, this dissertation applies automated text mining techniques to text-based communication to identify, describe and evaluate underlying social networks among online community members. The main thrust of the study is to automate the discovery of social ties that form between community members, using only the digital footprints left behind in their online forum postings. Currently, one of the most common but time consuming methods for discovering social ties between people is to ask questions about their perceived social ties. However, such a survey is difficult to collect due to the high investment in time associated with data collection and the sensitive nature of the types of questions that may be asked. To overcome these limitations, the dissertation presents a new, content-based method for automated discovery of social networks from threaded discussions, referred to as ‘name network’. As a case study, the proposed automated method is evaluated in the context of online learning communities. The results suggest that the proposed ‘name network’ method for collecting social network data is a viable alternative to costly and time-consuming collection of users’ data using surveys. The study also demonstrates how social networks produced by the ‘name network’ method can be used to study online classes and to look for evidence of collaborative learning in online learning communities. For example, educators can use name networks as a real time diagnostic tool to identify students who might need additional help or students who may provide such help to others. Future research will evaluate the usefulness of the ‘name network’ method in other types of online communities.
Resumo:
In the current study, we have developed a magnetic resonance imaging-based method for non-invasive detection of complement activation in placenta and foetal brain in vivo in utero. Using this method, we found that anti-complement C3-targeted ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles bind within the inflamed placenta and foetal brain cortical tissue, causing a shortening of the T2* relaxation time. We used two mouse models of pregnancy complications: a mouse model of obstetrics antiphospholipid syndrome (APS) and a mouse model of preterm birth (PTB). We found that detection of C3 deposition in the placenta in the APS model was associated with placental insufficiency characterised by increased oxidative stress, decreased vascular endothelial growth factor and placental growth factor levels and intrauterine growth restriction. We also found that foetal brain C3 deposition was associated with cortical axonal cytoarchitecture disruption and increased neurodegeneration in the mouse model of APS and in the PTB model. In the APS model, foetuses that showed increased C3 in their brains additionally expressed anxiety-related behaviour after birth. Importantly, USPIO did not affect pregnancy outcomes and liver function in the mother and the offspring, suggesting that this method may be useful for detecting complement activation in vivo in utero and predicting placental insufficiency and abnormal foetal neurodevelopment that leads to neuropsychiatric disorders.
Resumo:
By proposing a numerical based method on PCA-ANFIS(Adaptive Neuro-Fuzzy Inference System), this paper is focusing on solving the problem of uncertain cycle of water injection in the oilfield. As the dimension of original data is reduced by PCA, ANFIS can be applied for training and testing the new data proposed by this paper. The correctness of PCA-ANFIS models are verified by the injection statistics data collected from 116 wells inside an oilfield, the average absolute error of testing is 1.80 months. With comparison by non-PCA based models which average error is 4.33 months largely ahead of PCA-ANFIS based models, it shows that the testing accuracy has been greatly enhanced by our approach. With the conclusion of the above testing, the PCA-ANFIS method is robust in predicting the effectiveness cycle of water injection which helps oilfield developers to design the water injection scheme.
Resumo:
Background: The nitration of tyrosine residues in proteins is associated with nitrosative stress, resulting in the formation of 3-nitrotyrosine (3-NT). 3-NT levels in biological samples have been associated with numerous physiological and pathological conditions. For this reason, several attempts have been made in order to develop methods that accurately quantify 3-NT in biological samples. Regarding chromatographic methods, they seem to be very accurate, showing very good sensibility and specificity. However, accurate quantification of this molecule, which is present at very low concentrations both at physiological and pathological states, is always a complex task and a target of intense research. Objectives: We aimed to develop a simple, rapid, low-cost and sensitive 3-NT quantification method for use in medical laboratories as an additional tool for diagnosis and/or treatment monitoring of a wide range of pathologies. We also aimed to evaluate the performance of the HPLC-based method developed here in a wide range of biological matrices. Material and methods: All experiments were performed on a Hitachi LaChrom Elite® HPLC system and separation was carried out using a Lichrocart® 250-4 Lichrospher 100 RP-18 (5μm) column. The method was further validated according to ICH guidelines. The biological matrices tested were serum, whole blood, urine, B16 F-10 melanoma cell line, growth medium conditioned with the same cell line, bacterial and yeast suspensions. Results: From all the protocols tested, the best results were obtained using 0.5% CH3COOH:MeOH:H2O (15:15:70) as the mobile phase, with detection at wavelengths 215, 276 and 356 nm, at 25ºC, and using a flow rate of 1 mL/min. By using this protocol, it was possible to obtain a linear calibration curve (correlation coefficient = 1), limits of detection and quantification in the order of ng/mL, and a short analysis time (<15 minutes per sample). Additionally, the developed protocol allowed the successful detection and quantification of 3-NT in all biological matrices tested, with detection at 356 nm. Conclusion: The method described in this study, which was successfully developed and validated for 3-NT quantification, is simple, cheap and fast, rendering it suitable for analysis in a wide range of biological matrices.
Resumo:
This thesis, titled Governance and Community Capitals, explores the kinds of practical processes that have made governance work in three faith-based schools in the Western Highlands of Papua New Guinea (PNG). To date, the nation of PNG has been unable to meet its stated educational goals; however, some faith-based primary schools have overcome educational challenges by changing their local governance systems. What constitutes good governance in developing countries and how it can be achieved in a PNG schooling context has received very little scholarly attention. In this study, the subject of governance is approached at the nexus between the administrative sciences and asset-based community development. In this space, the researcher provides an understanding of the contribution that community capitals have made to understandings of local forms of governance in the development context. However, by and large, conceptions of governance have a history of being positioned within a Euro-centric frame and very little, if anything is known about the naming of capitals by indigenous peoples. In this thesis, six indigenous community capitals are made visible, expanding the repertoire of extant capitals published to date. The capitals identified and named in this thesis are: Story, Wisdom, Action, Blessing, Name and Unity. In-depth insights into these capitals are provided and through the theoretical idea of performativity, the researcher advances an understanding of how the habitual enactment of the practical components of the capitals made governance work in this unique setting. The study draws from a grounded and appreciative methodology and is based on a case study design incorporating a three-stage cycle of investigation. The first stage tested the application of an assets-based method to documentary sources of data including most significant change stories, community mapping and visual diaries. In the second stage, a group process method relevant to a PNG context was developed and employed. The third stage involved building theory from case study evidence using content analysis, language and metaphorical speech acts as guides for complex analysis. The thesis demonstrates the contribution that indigenous community capitals can make to understanding local forms of governance and how PNG faith-based schools meet their local governance challenges.