895 resultados para Oncogene Amplification
Resumo:
UNLABELLED: Amplification of the MET oncogene is associated with poor prognosis, metastatic dissemination, and drug resistance in many malignancies. We developed a method to capture and characterize circulating tumor cells (CTC) expressing c-MET using a ferromagnetic antibody. Immunofluorescence was used to characterize cells for c-MET, DAPI, and pan-CK, excluding CD45(+) leukocytes. The assay was validated using appropriate cell line controls spiked into peripheral blood collected from healthy volunteers (HV). In addition, peripheral blood was analyzed from patients with metastatic gastric, pancreatic, colorectal, bladder, renal, or prostate cancers. CTCs captured by c-MET were enumerated, and DNA FISH for MET amplification was performed. The approach was highly sensitive (80%) for MET-amplified cells, sensitive (40%-80%) for c-MET-overexpressed cells, and specific (100%) for both c-MET-negative cells and in 20 HVs. Of 52 patients with metastatic carcinomas tested, c-MET CTCs were captured in replicate samples from 3 patients [gastric, colorectal, and renal cell carcinoma (RCC)] with 6% prevalence. CTC FISH demonstrated that MET amplification in both gastric and colorectal cancer patients and trisomy 7 with gain of MET gene copies in the RCC patient. The c-MET CTC assay is a rapid, noninvasive, sensitive, and specific method for detecting MET-amplified tumor cells. CTCs with MET amplification can be detected in patients with gastric, colorectal, and renal cancers. IMPLICATIONS: This study developed a novel c-MET CTC assay for detecting c-MET CTCs in patients with MET amplification and warrants further investigation to determine its clinical applicability. Mol Cancer Res; 14(6); 539-47. ©2016 AACR.
Resumo:
Plastid microsatellite loci developed for Cephalanthera longifolia were used to examine the level of genetic variation within and between populations of the three widespread Cephalanthera species (C. damasonium, C. longifolia and C. rubra). The most detailed sampling was in C. longifolia (42 localities from Ireland to China; 147 individuals). Eight haplotypes were detected. One was detected in the vast majority of individuals and occurred from Ireland to Iran. Three others were only found in Europe (Ireland to Italy, England to Italy and Austria to Croatia). Two were only found in the Middle East and two only in Asia. In C. damasonium, 21 individuals from 10 populations (England to Turkey) were sampled. Only one haplotype was detected. In C. rubra, 34 individuals from eight populations (England to Turkey) were sampled. Although it was not possible to amplify all loci for all samples of this species, nine haplotypes were detected. Short alleles for the trnS-trnG region found in two populations of C. rubra were characterized by sequencing and were caused by deletions of 26 and 30 base pairs. At this level of sampling, it appears that C. rubra shows the greatest genetic variability. Cephalanthera longifolia, C. rubra and C. damasonium have previously been characterized as outbreeding, outbreeding with facultative vegetative reproduction and inbreeding, respectively. Patterns of genetic variation here are discussed in the light of these reproductive system differences. The primers used in these three species of Cephalanthera were also demonstrated to amplify these loci in another five species (C. austiniae, C. calcarata, C. epipactoides, C. falcata and C. yunnanensis). Although it is sometimes treated as a synonym of C. damasonium, the single sample of C. yunnanensis from China had a markedly different haplotype from that found in C. damasonium. All three loci were successfully amplified in two achlorophyllous, myco-heterotrophic species, C. austinae and C. calcarata. © 2010 The Linnean Society of London.
Resumo:
Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems.
Resumo:
A long-term time series of plankton and benthic records in the North Sea indicates an increase in decapods and a decline in their prey species that include bivalves and flatfish recruits. Here, we show that in the southern North Sea the proportion of decapods to bivalves doubled following a temperature-driven, abrupt ecosystem shift during the 1980s. Analysis of decapod larvae in the plankton reveals a greater presence and spatial extent of warm-water species where the increase in decapods is greatest. These changes paralleled the arrival of new species such as the warm-water swimming crab Polybius henslowii now found in the southern North Sea. We suggest that climate-induced changes among North Sea decapods have played an important role in the trophic amplification of a climate signal and in the development of the new North Sea dynamic regime.
Resumo:
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.
Resumo:
The Fes protein tyrosine kinase is abundantly expressed in phagocytic immune cells, including tumor associated macrophages. Fes knockout mice (fes-/-) display enhanced sensitivity to LPS, and this was shown to be associated with increased NF-κB signaling and TNFα production from fes-/- macrophages. Interestingly, tumor onset in the mouse mammary tumor virus (MMTV-Neu) transgenic mouse model of breast cancer is significantly delayed in fes-/- mice, and this was associated with increased frequency of CD11b+ myeloid and CD3+ T cells in the premalignant mammary glands. Recent studies have also implicated Fes in cross-talk between MHC-I and the NF-κB and IRF-3 pathways in macrophages. Signal 3, the production of inflammatory cytokines and Type I interferons downstream of NF-κB and IRF-3 pathways in antigen presenting cells, is considered an important component of T-cell activation, after engagement of T cell receptor by MHC presented antigen (Signal 1) and co-receptors by their ligands (Signal 2). Using a lymphocytic choriomeningitis virus (LCMV) model of immune activation, I show that LPS stimulated fes-/- macrophages promote more robust activation of LCMV antigenspecific CD8+ T cells than wild type macrophages (fes+/+). Furthermore, LPS stimulated fes-/- macrophages showed increased phosphorylation of NF-B and IRF-3. I also showed that Fes colocalizes with MHC-I in dynamic vesicular structures within macrophages. These observations are consistent with a model where Fes regulates Signal 3 in antigen presenting cells through roles in cross-talk between MHC-I and the NF-kB and IRF-3 signaling pathways. This suggests that Fes plays an immune checkpoint role at the level of Signal 3, and that Fes inhibition could promote tumor immunity through increased Signal 3 driven T cell activation.
Resumo:
The effect of flavor amplification on sensory-specfic satiety was investigated. Nineteen young adults (mean age = 25 years) and 19 elderly adults (mean age = 72 years) rated the sensory properties of six foods, and were then asked to consume normal-flavored or flavor-amplified strawberry yogurt until comfortably full. The participants then re-rated the sensory properties of the six foods. There were no cl differences in the amount of yogurt consumed in either age group. Moreover flavor-fortifying the yogurt had no effect on the amount consumed in either age group. The consumption of both yogurts caused a reduction in rated pleasantness of the yogurt among young adults, but no change in the rated pleasantness of the uneaten foods. However, the elderly did not show a decrease in the rated pleasantness of any of the foods contained in the taste trays This study indicates that sensations of sensory-specific satiety were significantly reduced in the elderly, and these sensations were not induced by the addition of strawberry flavor to the yogurt.
Resumo:
Attempts to design truly universal primers to amplify chloroplast microsatellites have met with limited success due to nonconservation of repeat loci across widely divergent taxa. We have used the complete chloroplast genome sequences of rice, maize and wheat to design five pairs of primers that amplify homologous mononucleotide repeats across the Poaceae (grasses). Sequencing confirmed conservation of repeat motifs across subfamilies and a preliminary study in Anthoxanthum odoratum revealed polymorphism at two loci with a haplotype diversity value of 0.495. These primers provide a valuable tool to study cytoplasmic diversity in this extensively studied and economically important range of taxa.