846 resultados para OIL-SPILL
Resumo:
Mode of access: Internet.
Resumo:
This research explores how news media reports construct representations of a business crisis through language. In an innovative approach to dealing with the vast pool of potentially relevant texts, media texts concerning the BP Deepwater Horizon oil spill are gathered from three different time points: immediately after the explosion in 2010, one year later in 2011 and again in 2012. The three sets of 'BP texts' are investigated using discourse analysis and semi-quantitative methods within a semiotic framework that gives an account of language at the semiotic levels of sign, code, mythical meaning and ideology. The research finds in the texts three discourses of representation concerning the crisis that show a movement from the ostensibly representational to the symbolic and conventional: a discourse of 'objective factuality', a discourse of 'positioning' and a discourse of 'redeployment'. This progression can be shown to have useful parallels with Peirce's sign classes of Icon, Index and Symbol, with their implied movement from a clear motivation by the Object (in this case the disaster events), to an arbitrary, socially-agreed connection. However, the naturalisation of signs, whereby ideologies are encoded in ways of speaking and writing that present them as 'taken for granted' is at its most complete when it is least discernible. The findings suggest that media coverage is likely to move on from symbolic representation to a new kind of iconicity, through a fourth discourse of 'naturalisation'. Here the representation turns back towards ostensible factuality or iconicity, to become the 'naturalised icon'. This work adds to the study of media representation a heuristic for understanding how the meaning-making of a news story progresses. It offers a detailed account of what the stages of this progression 'look like' linguistically, and suggests scope for future research into both language characteristics of phases and different news-reported phenomena.
Resumo:
Contaminants of emerging concern (CECs) are continuously being released into the environment mainly because of their incomplete removal in the sewage treatment plants (STPs). The CECs selected for the study include antibiotics (macrolides, sulfonamides and ciprofloxacin), sucralose (an artificial sweetener) and dioctyl sulfosuccinate (DOSS, chemical dispersant used in the Deepwater Horizon oil spill). After being discharged into waterways from STPs, photo degradation is a key factor in dictating the environmental fate of antibiotics and sucralose. Photodegradation efficiency depends on many factors such as pH of the matrix, matrix composition, light source and structure of the molecule. These factors exert either synergistic or antagonistic effects in the environment and thus experiments with isolated factors may not yield the same results as the natural environmental processes. Hence in the current study photodegradation of 13 CECs (antibiotics, sucralose and dicotyl sulfosuccinate) were evaluated using natural water matrices with varying composition (deionized water, fresh water and salt water) as well as radiation of different wavelengths (254 nm, 350 nm and simulated solar radiation) in order to mimic natural processes. As expected the contribution of each factor on the overall rate of photodegradation is contaminant specific, for example under similar conditions, the rate in natural waters compared to pure water was enhanced for antibiotics (2-11 fold), significantly reduced for sucralose (no degradation seen in natural waters) and similar in both media for DOSS. In general, it was observed that the studied compounds degraded faster at 254 nm, while when using a simulated sunlight radiation the rate of photolysis of DOSS increased and the rates for antibiotics decreased in comparison to the 350 nm radiation. The photo stability of the studied CECs followed the order sucralose > DOSS > macrolides > sulfonamides > ciprofloxacin and a positive relationship was observed between photo stability and their ubiquitous presence in natural aquatic matrices. An online LC-MS/MS method was developed and validated for sucralose and further applied to reclaimed waters (n =56) and drinking waters (n = 43) from South Florida. Sucralose was detected in reclaimed waters with concentrations reaching up to 18 μg/L. High frequency of detection (> 80%) in drinking waters indicate contamination of ground waters in South Florida by anthropogenic activity.^
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.
Resumo:
Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.
For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.
Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.
Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.
In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.
For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.
Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.
Resumo:
The Canadian economy is largely dependent on the distribution of large volumes of oil to domestic and international markets by a long network of pipelines. Unfortunately, accidents occur, and oil can leak or spill from these pipelines before it reaches its destination. Of particular concern are the long-term consequences of oil spills in freshwater, which include sinking of oil in water and the contamination of sensitive areas, such as where fish (e.g., salmon) deposit their eggs in gravel-dominated river sediments. There is a knowledge gap regarding the fate and behaviour of oil in river sediment. To this end, this study aimed at finding the potential for diluted bitumen (dilbit) oil to become trapped in gravel and to transfer hydrocarbons into water by dissolution, which are harmful to aquatic life. Two sets of laboratory experiments were conducted to simulate conditions of an oil spill on an exposed bank or in shallow water. In the first set, by conducting capillary pressure-saturation (Pc-Sw) experiments it was found that dilbit can enter gravel pores without much resistance and approximately 14% of the pore volume can be occupied by discontinuous single or multipore blobs of dilbit following imbibition of water. Air-water Pc-Sw experiments done in laboratory 1-D columns required gravity correction and could be successfully scaled to predict dilbit-water Pc-Sw curves, except for the trapped amount of dilbit. Trapped dilbit constituents can be dissolved into the water flowing through gravel pores (hyporheic flow) at different velocities. In the second set, dissolution experiments suggested that for the duration of the test, hydrocarbons that cause acute toxicity dissolve rapidly, likely resulting in a decrease in their effective solubility. However, dilbit saturation changed only <2% within that time. Chronically toxic PAH compounds were also detected in the effluent water. The total concentration of all detected PAHs and alkylPAHs exceeded the threshold literature value to protect early-life stage fish. Observations of decreased concentrations with increased aqueous velocities as well as less than equilibrium concentrations indicated that the mass transfer was rate-limited. A correlation was developed for the mass transfer rate coefficient to understand the mass transfer behaviour beyond the conditions used in the experiments, which had a Reynolds number exponent similar to the studies of NAPL dissolution in groundwater.
Resumo:
In situ methods used for water quality assessment have both physical and time constraints. Just a limited number of sampling points can be performed due to this, making it difficult to capture the range and variability of coastal processes and constituents. In addition, the mixing between fresh and oceanic water creates complex physical, chemical and biological environment that are difficult to understand, causing the existing measurement methodologies to have significant logistical, technical, and economic challenges and constraints. Remote sensing of ocean colour makes it possible to acquire information on the distribution of chlorophyll and other constituents over large areas of the oceans in short periods. There are many potential applications of ocean colour data. Satellite-derived products are a key data source to study the distribution pattern of organisms and nutrients (Guillaud et al. 2008) and fishery research (Pillai and Nair 2010; Solanki et al. 2001. Also, the study of spatial and temporal variability of phytoplankton blooms, red tide identification or harmful algal blooms monitoring (Sarangi et al. 2001; Sarangi et al. 2004; Sarangi et al. 2005; Bhagirathan et al., 2014), river plume or upwelling assessments (Doxaran et al. 2002; Sravanthi et al. 2013), global productivity analyses (Platt et al. 1988; Sathyendranath et al. 1995; IOCCG2006) and oil spill detection (Maianti et al. 2014). For remote sensing to be accurate in the complex coastal waters, it has to be validated with the in situ measured values. In this thesis an attempt to study, measure and validate the complex waters with the help of satellite data has been done. Monitoring of coastal ecosystem health of Arabian Sea in a synoptic way requires an intense, extensive and continuous monitoring of the water quality indicators. Phytoplankton determined from chl-a concentration, is considered as an indicator of the state of the coastal ecosystems. Currently, satellite sensors provide the most effective means for frequent, synoptic, water-quality observations over large areas and represent a potential tool to effectively assess chl-a concentration over coastal and oceanic waters; however, algorithms designed to estimate chl-a at global scales have been shown to be less accurate in Case 2 waters, due to the presence of water constituents other than phytoplankton which do not co-vary with the phytoplankton. The constituents of Arabian Sea coastal waters are region-specific because of the inherent variability of these optically-active substances affected by factors such as riverine input (e.g. suspended matter type and grain size, CDOM) and phytoplankton composition associated with seasonal changes.
Resumo:
Terrestrial remote sensing imagery involves the acquisition of information from the Earth's surface without physical contact with the area under study. Among the remote sensing modalities, hyperspectral imaging has recently emerged as a powerful passive technology. This technology has been widely used in the fields of urban and regional planning, water resource management, environmental monitoring, food safety, counterfeit drugs detection, oil spill and other types of chemical contamination detection, biological hazards prevention, and target detection for military and security purposes [2-9]. Hyperspectral sensors sample the reflected solar radiation from the Earth surface in the portion of the spectrum extending from the visible region through the near-infrared and mid-infrared (wavelengths between 0.3 and 2.5 µm) in hundreds of narrow (of the order of 10 nm) contiguous bands [10]. This high spectral resolution can be used for object detection and for discriminating between different objects based on their spectral xharacteristics [6]. However, this huge spectral resolution yields large amounts of data to be processed. For example, the Airbone Visible/Infrared Imaging Spectrometer (AVIRIS) [11] collects a 512 (along track) X 614 (across track) X 224 (bands) X 12 (bits) data cube in 5 s, corresponding to about 140 MBs. Similar data collection ratios are achieved by other spectrometers [12]. Such huge data volumes put stringent requirements on communications, storage, and processing. The problem of signal sbspace identification of hyperspectral data represents a crucial first step in many hypersctral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction (DR) yelding gains in data storage and retrieval and in computational time and complexity. Additionally, DR may also improve algorithms performance since it reduce data dimensionality without losses in the useful signal components. The computation of statistical estimates is a relevant example of the advantages of DR, since the number of samples required to obtain accurate estimates increases drastically with the dimmensionality of the data (Hughes phnomenon) [13].
Resumo:
The oil activity in the Rio Grande do Norte State (RN) is a permanent threat to coastal ecosystems, particularly mangroves, with the possibility of oil spills. In this context, the objective of this study was to evaluate the potential resistance of the mangrove environment of a possible spill. Were selected and isolated microorganisms degrading oil by the technique of enrichment cultures and formation of a bacterial consortium. The kinetic study of the consortium was held in rotary incubator shaken at 150 rpm and 30° C. Samples were taken at intervals of 4 hours for analysis of cell concentration and surface tension. The biodegradation was monitored using two methods of respirometry: manometric (OxiTop-C ®) and conductivimetry, where the biodegradation of oil was estimated indirectly by oxygen consumption and CO2 production, respectively. Furthermore, it was used a full 2² factorial design with triplicate at central point to the runs that used the conductivimetric methodology.. The technique of enrichment cultures allowed to obtain thirteen bacterial strains. Kinetic study of the consortium, we can showed the absence of the lag phase, reaching a maximum cell concentration of 2.55 g / L at 16 h of cultivation and a reduction on surface tension. When we adopted the methodology of OxiTop-C was detected a band indicating biodegradability (1% oil v/v), however when we used the conductivimetry methodology did not observe any band that would indicate effective biodegradation. By monitoring a process of biodegradation is necessary to observe the methodology will be adopted to evaluate the biodegradation process, since for the same conditions adopted different methodologies can produce different results. The oil-degrading isolates from soils of the mangrove estuary Potengi / RN are largely to be used in bioremediation strategies of these places, in the case of a possible oil spill, or it can be used in the treatment of waste oil generated in saline environments, since they are optimized the conditions of the tests so that the efficiency of biodegradation reach the minimum level suggested by the standarts
Resumo:
The State of Paraíba is one of the most dynamic states of Brazil, strategically located in the northeast, is notable for the excellent potential for integration of different transportation modes forming the states of Rio Grande do Norte, Pernambuco and Alagoas. The dynamic that occurs with port activity causes changes in the space where it is installed. And the elements of this space are always more than suffering direct or indirect influences as the flow in the port is expanded. Therefore, this region became subject to the accidental spillage of oil, because it presents a heavy traffic of ships of various sizes that can run aground or collide with oil causing accidental events. The study of geomorphological and sedimentological compositions of seafloor becomes important as more is known about the relationships between these parameters and associated fauna, and can identify their preferred habitats. The database background, acoustically collected along the proposed study area, is a wealth of information, which were duly examined, cataloged and made available. Such information can serve as an important tool, providing a geomorphological survey of the sedimentary area studied, and come to subsidize, in a flexible, future decision making. With the study area Port of Cabedelo, Paraíba - Brazil, this research aimed to evaluate the influence of the tidal surface and background in modeling the seabed, including the acquisition of information about the location of submerged rocky bodies and the depth of these bodies may turn out to be natural traps for the trapping of oil in case of leaks, and obtain the relationship between types of bed and the hydrodynamic conditions present in the region. In this context, for this study were collected bathymetric data (depth) and physical oceanographic (height of water column, water temperature, intensity and direction of currents, waves and turbidity), meteorological (rainfall, air temperature, humidity, winds and barometric pressure) of the access channel to the Port of Cabedelo / PB and its basin evolution (where the cruise ships dock), and includes tools of remote sensing (Landsat 7 ETM +, 2001), so that images and the results are integrated into Geographic Information Systems and used in the elaboration of measures aimed at environmental protection areas under the influence of this scale facilities, serving as a grant to prepare a contingency plan in case of oil spills in the region. The main findings highlight the techniques of using hydroacoustic data acquisition together bathymetric surveys of high and low frequency. From there, five were prepared in bathymetric pattern of Directorate of Hydrography and Navigation - DHN, with the depth in meters, on a scale of 1:2500 (Channel and Basin Evolution of Access to Port of Cabedelo), where there is a large extent possible beachrocks that hinder the movement of vessels in the port area, which can cause collisions, running aground and leaking oil. From the scatter diagram of the vectors of currents, it can be seen as the tidal stream and undergoes a channeling effect caused by the bidirectional effect of the tide (ebb and flood) in the basin of the Port of Cabedelo evolution in NW-direction SE and the highest speed of the currents occurs at low tide. The characterization weather for the period from 28/02 to 04/07/2010 values was within the expected average for the region of study. The multidisciplinary integration of products (digital maps and remote sensing images), proved to be efficient for the characterization of underwater geomorphological study area, reaching the aim to discriminate and enhance submerged structures, previously not visible in the images
Resumo:
The objective of this Doctoral Thesis was monitoring, in trimestral scale, the coastal morphology of the Northeastern coast sections of Rio Grande do Norte State, in Brazil, which is an area of Potiguar Basin influenced by the oil industry activities. The studied sections compose coastal areas with intense sedimentary erosion and high environmental sensitivity to the oil spill. In order to achieve the general objective of this study, the work has been systematized in four steps. The first one refers to the evaluation of the geomorphological data acquisition methodologies used on Digital Elevation Model (DEM) of sandy beaches. The data has been obtained from Soledade beach, located on the Northeastern coast of Rio Grande Norte. The second step has been centered on the increasing of the reference geodetic infrastructure to accomplish the geodetic survey of the studied area by implanting a station in Corta Cachorro Barrier Island and by conducting monitoring geodetic surveys to understand the beach system based on the Coastline (CL) and on DEM multitemporal analysis. The third phase has been related to the usage of the methodology developed by Santos; Amaro (2011) and Santos et al. (2012) for the surveying, processing, representation, integration and analysis of Coastlines from sandy coast, which have been obtained through geodetic techniques of positioning, morphological change analysis and sediment transport. The fourth stage represents the innovation of surveys in coastal environment by using the Terrestrial Laser Scanning (TLS), based on Light Detection and Ranging (LiDAR), to evaluate a highly eroded section on Soledade beach where the oil industry structures are located. The evaluation has been achieved through high-precision DEM and accuracy during the modeling of the coast morphology changes. The result analysis of the integrated study about the spatial and temporal interrelations of the intense coastal processes in areas of building cycles and destruction of beaches has allowed identifying the causes and consequences of the intense coastal erosion in exposed beach sections and in barrier islands
Resumo:
Contaminants of emerging concern (CECs) are continuously being released into the environment mainly because of their incomplete removal in the sewage treatment plants (STPs). The CECs selected for the study include antibiotics (macrolides, sulfonamides and ciprofloxacin), sucralose (an artificial sweetener) and dioctyl sulfosuccinate (DOSS, chemical dispersant used in the Deepwater Horizon oil spill). After being discharged into waterways from STPs, photo degradation is a key factor in dictating the environmental fate of antibiotics and sucralose. Photodegradation efficiency depends on many factors such as pH of the matrix, matrix composition, light source and structure of the molecule. These factors exert either synergistic or antagonistic effects in the environment and thus experiments with isolated factors may not yield the same results as the natural environmental processes. Hence in the current study photodegradation of 13 CECs (antibiotics, sucralose and dicotyl sulfosuccinate) were evaluated using natural water matrices with varying composition (deionized water, fresh water and salt water) as well as radiation of different wavelengths (254 nm, 350 nm and simulated solar radiation) in order to mimic natural processes. As expected the contribution of each factor on the overall rate of photodegradation is contaminant specific, for example under similar conditions, the rate in natural waters compared to pure water was enhanced for antibiotics (2-11 fold), significantly reduced for sucralose (no degradation seen in natural waters) and similar in both media for DOSS. In general, it was observed that the studied compounds degraded faster at 254 nm, while when using a simulated sunlight radiation the rate of photolysis of DOSS increased and the rates for antibiotics decreased in comparison to the 350 nm radiation. The photo stability of the studied CECs followed the order sucralose > DOSS > macrolides > sulfonamides > ciprofloxacin and a positive relationship was observed between photo stability and their ubiquitous presence in natural aquatic matrices. An online LC-MS/MS method was developed and validated for sucralose and further applied to reclaimed waters (n =56) and drinking waters (n = 43) from South Florida. Sucralose was detected in reclaimed waters with concentrations reaching up to 18 µg/L. High frequency of detection (> 80%) in drinking waters indicate contamination of ground waters in South Florida by anthropogenic activity.
Resumo:
Routine monitoring of environmental pollution demands simplicity and speed without sacrificing sensitivity or accuracy. The development and application of sensitive, fast and easy to implement analytical methodologies for detecting emerging and traditional water and airborne contaminants in South Florida is presented. A novel method was developed for quantification of the herbicide glyphosate based on lyophilization followed by derivatization and simultaneous detection by fluorescence and mass spectrometry. Samples were analyzed from water canals that will hydrate estuarine wetlands of Biscayne National Park, detecting inputs of glyphosate from both aquatic usage and agricultural runoff from farms. A second study describes a set of fast, automated LC-MS/MS protocols for the analysis of dioctyl sulfosuccinate (DOSS) and 2-butoxyethanol, two components of Corexit®. Around 1.8 million gallons of those dispersant formulations were used in the response efforts for the Gulf of Mexico oil spill in 2010. The methods presented here allow the trace-level detection of these compounds in seawater, crude oil and commercial dispersants formulations. In addition, two methodologies were developed for the analysis of well-known pollutants, namely Polycyclic Aromatic Hydrocarbons (PAHs) and airborne particulate matter (APM). PAHs are ubiquitous environmental contaminants and some are potent carcinogens. Traditional GC-MS analysis is labor-intensive and consumes large amounts of toxic solvents. My study provides an alternative automated SPE-LC-APPI-MS/MS analysis with minimal sample preparation and a lower solvent consumption. The system can inject, extract, clean, separate and detect 28 PAHs and 15 families of alkylated PAHs in 28 minutes. The methodology was tested with environmental samples from Miami. Airborne Particulate Matter is a mixture of particles of chemical and biological origin. Assessment of its elemental composition is critical for the protection of sensitive ecosystems and public health. The APM collected from Port Everglades between 2005 and 2010 was analyzed by ICP-MS after acid digestion of filters. The most abundant elements were Fe and Al, followed by Cu, V and Zn. Enrichment factors show that hazardous elements (Cd, Pb, As, Co, Ni and Cr) are introduced by anthropogenic activities. Data suggest that the major sources of APM were an electricity plant, road dust, industrial emissions and marine vessels.
Resumo:
This report reviews some of the natural ecological processes at work within a salt marsh as they relate to a spill of natural gas condensate - a mixture of aliphatic hydrocarbons, n-hexane, benzene, toluene, and xylene. It also reviews the environmental impacts of some of the components of natural gas condensate as well as related compounds (crude oil, higher molecular weight hydrocarbons, polycyclic aromatic hydrocarons - PAHs, linear alkyl-benzenes - LABs, etc.) on salt marsh ecosystems in southern Louisiana and elsewhere in the world. The behavior and persistence of these compounds once they have entered the environment is also considered.
Resumo:
Oil pollution is a significant conservation concern. We examined data from six institutions along the coast of South America: Emergency Relief Team of the International Fund for Animal Welfare, Fundacion Mundo Marino, Centro de Recuperacao de Animais Marinhos, Natura Patagonia, Associacao R3 Animal, and Mar del Plata Aquarium and data from resightings in Argentina, Brazil, Chile and Falkland/Malvinas Islands. From 2000 to 2010, 2183 oiled Magellanic penguins were rehabilitated as part of the routine activities of these institutions or during emergency responses to eight oil spills in which they were involved; all rehabilitated penguins were flipper banded and released. Since their release, 41 penguins were resighted until 31 December 2011. The results demonstrate that, when combined with other prevention strategies, the rehabilitation of Magellanic penguins is a strategy that contributes to the mitigation of adverse effects of oil spills and chronic pollution to the species. (C) 2012 Elsevier Ltd. All rights reserved.