979 resultados para Null-plane coordinates
Resumo:
Analytical solutions to problems in finite elasticity are most often derived using the semi-inverse approach along with the spatial form of the equations of motion involving the Cauchy stress tensor. This procedure is somewhat indirect since the spatial equations involve derivatives with respect to spatial coordinates while the unknown functions are in terms of material coordinates, thus necessitating the use of the chain rule. In this classroom note, we derive compact expressions for the components of the divergence, with respect to orthogonal material coordinates, of the first Piola-Kirchhoff stress tensor. The spatial coordinate system is also assumed to be an orthogonal curvilinear one, although, not necessarily of the same type as the material coordinate system. We show by means of some example applications how analytical solutions can be derived more directly using the derived results.
Resumo:
The tendency of granular materials in rapid shear flow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear how of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.
Resumo:
Often, wrong conclusions about the mobilities of species are drawn from the position of the Kirkendall marker plane or voids in the interdiffusion zone. To clarify, I have discussed the growth mechanism of the phases and the position of the marker plane depending on the relative mobilities of the species. The formation of different kinds of voids in the interdiffusion zone is discussed. Further, the microstructure that could be found because of the Kirkendall effect is also explained.
Resumo:
The tendency of granular materials in rapid shear ow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear flow of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.
Resumo:
In this work, one-dimensional flow-acoustic analysis of two basic configurations of air cleaners, (i) Rectangular Axial-Inlet, Axial-Outlet (RAIAO) and (ii) Rectangular Transverse-Inlet, Transverse-Outlet (RTITO), has been presented. This 1-D analytical approach has been verified with the help of 3-D FEM based software. Through subtraction of the acoustic performance of the bare plenum (without filter element) from that of the complete air cleaner box, the solitary performance of the filter element has been evaluated. Part of the present analysis illustrates that the analytical formulation remains effective even with offset positioning of the air pipes from the centre of the cross section of the air cleaner. The 1-D analytical tool computes much faster than its 3-D simulation counterpart. The present analysis not only predicts the acoustical impact of mean flow, but it also depicts the scenario with increased resistance of the filter element. Thus, the proposed 1-D analysis would help in the design of acoustically efficient air cleaners for automotive applications. (C) 2011 Institute of Noise Control Engineering.
Resumo:
The pursuit-evasion problem of two aircraft in a horizontal plane is modelled as a zerosum differential game with capture time as payoff. The aircraft are modelled as point masses with thrust and bank angle controls. The games of kind and degree for this differential game are solved.
Resumo:
Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. This technique is capable of quantitative reconstructions of absorption coefficient inhomogeneities of tissue. The motivation for reconstructing the optical property variation is that it, and, in particular, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and accuracy from noisy measurements. We study the performance of a phase array system for detection of optical inhomogeneities in tissue. The light transport through a tissue is diffusive in nature and can be modeled using diffusion equation if the optical parameters of the inhomogeneity are close to the optical properties of the background. The amplitude cancellation method that uses dual out-of-phase sources (phase array) can detect and locate small objects in turbid medium. The inverse problem is solved using model based iterative image reconstruction. Diffusion equation is solved using finite element method for providing the forward model for photon transport. The solution of the forward problem is used for computing the Jacobian and the simultaneous equation is solved using conjugate gradient search. The simulation studies have been carried out and the results show that a phase array system can resolve inhomogeneities with sizes of 5 mm when the absorption coefficient of the inhomogeneity is twice that of the background tissue. To validate this result, a prototype model for performing a dual-source system has been developed. Experiments are carried out by inserting an inhomogeneity of high optical absorption coefficient in an otherwise homogeneous phantom while keeping the scattering coefficient same. The high frequency (100 MHz) modulated dual out-of-phase laser source light is propagated through the phantom. The interference of these sources creates an amplitude null and a phase shift of 180° along a plane between the two sources with a homogeneous object. A solid resin phantom with inhomogeneities simulating the tumor is used in our experiment. The amplitude and phase changes are found to be disturbed by the presence of the inhomogeneity in the object. The experimental data (amplitude and the phase measured at the detector) are used for reconstruction. The results show that the method is able to detect multiple inhomogeneities with sizes of 4 mm. The localization error for a 5 mm inhomogeneity is found to be approximately 1 mm.
Resumo:
Analysis of certain second-order nonlinear systems, not easily amenable to the phase-plane methods, and described by either of the following differential equations xÿn-2ÿ+ f(x)xÿ2n+g(x)xÿn+h(x)=0 ÿ+f(x)xÿn+h(x)=0 n≫0 can be effected easily by drawing the entire portrait of trajectories on a new plane; that is, on one of the xÿnÿx planes. Simple equations are given to evaluate time from a trajectory on any of these n planes. Poincaré's fundamental phase plane xÿÿx is conceived of as the simplest case of the general xÿnÿx plane.
Resumo:
The paper presents a graphical-numerical method for determining the transient stability limits of a two-machine system under the usual assumptions of constant input, no damping and constant voltage behind transient reactance. The method presented is based on the phase-plane criterion,1, 2 in contrast to the usual step-by-step and equal-area methods. For the transient stability limit of a two-machine system, under the assumptions stated, the sum of the kinetic energy and the potential energy, at the instant of fault clearing, should just be equal to the maximum value of the potential energy which the machines can accommodate with the fault cleared. The assumption of constant voltage behind transient reactance is then discarded in favour of the more accurate assumption of constant field flux linkages. Finally, the method is extended to include the effect of field decrement and damping. A number of examples corresponding to each case are worked out, and the results obtained by the proposed method are compared with those obtained by the usual methods.
Resumo:
Approximate closed-form expressions for the propagation characteristics of a microstrip line with a symmetrical aperture in its ground plane are reported in this article. Well-known expressions for the characteristic impedance of a regular microstrip line have been modified to incorporate the effect of this aperture. The accuracy of these expressions for various values of substrate thickness, permittivity and line width has been studied in detail by fullwave simulations. This has been further verified by measurements. These expressions are easier to compute and find immense use in the design of broadband filters, tight couplers, power dividers, transformers, delay lines, and matching circuits. A broadband filter with aperture in ground plane is demonstrated in this article. (c) 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.
Resumo:
Null dereferences are a bane of programming in languages such as Java. In this paper we propose a sound, demand-driven, inter-procedurally context-sensitive dataflow analysis technique to verify a given dereference as safe or potentially unsafe. Our analysis uses an abstract lattice of formulas to find a pre-condition at the entry of the program such that a null-dereference can occur only if the initial state of the program satisfies this pre-condition. We use a simplified domain of formulas, abstracting out integer arithmetic, as well as unbounded access paths due to recursive data structures. For the sake of precision we model aliasing relationships explicitly in our abstract lattice, enable strong updates, and use a limited notion of path sensitivity. For the sake of scalability we prune formulas continually as they get propagated, reducing to true conjuncts that are less likely to be useful in validating or invalidating the formula. We have implemented our approach, and present an evaluation of it on a set of ten real Java programs. Our results show that the set of design features we have incorporated enable the analysis to (a) explore long, inter-procedural paths to verify each dereference, with (b) reasonable accuracy, and (c) very quick response time per dereference, making it suitable for use in desktop development environments.
Resumo:
The effect of base dissipation on the granular flow down an inclined plane is examined by altering the coefficient of restitution between the moving and base particles in discrete element (DE) simulations. The interaction laws between two moving particles are kept fixed, and the coefficient of restitution (damping constant in the DE simulations) between the base and moving particles are altered to reduce dissipation, and inject energy from the base. The energy injection does result in an increase in the strain rate by up to an order of magnitude, and the temperature by up to two orders of magnitude at the base. However, the volume fraction, strain rate and temperature profiles in the bulk (above about 15 particle diameters from the base) are altered very little by the energy injection at the base. We also examine the variation of h(stop), the minimum height at the cessation of flow, with energy injection from the base. It is found that at a fixed angle of inclination, h(stop) decreases as the energy dissipation at the base decreases.