1000 resultados para Nucleon-nucleon interaction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a coupled system of integral equations for the pp → ¯NN and ¯K K → ¯N N S-waves derived from Roy–Steiner equations for pion–nucleon scattering. We discuss the solution of the corresponding two-channel Muskhelishvili–Omnès problem and apply the results to a dispersive analysis of the scalar form factor of the nucleon fully including ¯KK intermediate states. In particular, we determine the corrections Ds and DD, which are needed for the extraction of the pion– nucleon s term from pN scattering, and show that the difference DD −Ds = (−1.8±0.2)MeV is insensitive to the input pN parameters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with Xe-129 and Xe-131 nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c(2), with a minimum cross section of 3.5 x 10(-40) cm(2) at a WIMP mass of 45 GeV/c(2), at 90% confidence level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show how to avoid unnecessary and uncontrolled assumptions usually made in the literature about soft SU(3) flavor symmetry breaking in determining the two-flavor nucleon matrix elements relevant for direct detection of weakly interacting massive particles (WIMPs). Based on SU(2) chiral perturbation theory, we provide expressions for the proton and neutron scalar couplings fp,nu and fp,nd with the pion-nucleon σ term as the only free parameter, which should be used in the analysis of direct detection experiments. This approach for the first time allows for an accurate assessment of hadronic uncertainties in spin-independent WIMP-nucleon scattering and for a reliable calculation of isospin-violating effects. We find that the traditional determinations of Vfpu−fnu and fpd−fnd are off by a factor of 2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We discuss under which circumstances the resummation of the multiple-scattering series is justified from an EFT point of view. The application to πd and K̅d scattering is briefly discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present results on the nucleon scalar, axial, and tensor charges as well as on the momentum fraction, and the helicity and transversity moments. The pion momentum fraction is also presented. The computation of these key observables is carried out using lattice QCD simulations at a physical value of the pion mass. The evaluation is based on gauge configurations generated with two degenerate sea quarks of twisted mass fermions with a clover term. We investigate excited states contributions with the nucleon quantum numbers by analyzing three sink-source time separations. We find that, for the scalar charge, excited states contribute significantly and to a less degree to the nucleon momentum fraction and helicity moment. Our result for the nucleon axial charge agrees with the experimental value. Furthermore, we predict a value of 1.027(62) in the MS¯¯¯¯¯ scheme at 2 GeV for the isovector nucleon tensor charge directly at the physical point. The pion momentum fraction is found to be ⟨x⟩π±u−d=0.214(15)(+12−9) in the MS¯¯¯¯¯ at 2 GeV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

"Contract No. AT(30-1)-2897."

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main goal of this dissertation was to study two- and three-nucleon Short Range Correlations (SRCs) in high energy three-body breakup of 3He nucleus in 3He(e, e'NN) N reaction. SRCs are characterized by quantum fluctuations in nuclei during which constituent nucleons partially overlap with each other. ^ A theoretical framework is developed within the Generalized Eikonal Approximation (GEA) which upgrades existing medium-energy methods that are inapplicable for high momentum and energy transfer reactions. High momentum and energy transfer is required to provide sufficient resolution for probing SRCs. GEA is a covariant theory which is formulated through the effective Feynman diagrammatic rules. It allows self-consistent calculation of single and double re-scatterings amplitudes which are present in three-body breakup processes. The calculations were carried out in detail and the analytical result for the differential cross section of 3He(e, e'NN)N reaction was derived in a form applicable for programming and numerical calculations. The corresponding computer code has been developed and the results of computation were compared to the published experimental data, showing satisfactory agreement for a wide range of values of missing momenta. ^ In addition to the high energy approximation this study exploited the exclusive nature of the process under investigation to gain more information about the SRCs. The description of the exclusive 3He( e, e'NN)N reaction has been done using the formalism of the nuclear decay function, which is a practically unexplored quantity and is related to the conventional spectral function through the integration of the phase space of the recoil nucleons. Detailed investigation showed that the decay function clearly exhibits the main features of two- and three-nucleon correlations. Four highly practical types of SRCs in 3He nucleus were discussed in great detail for different orders of the final state re-interactions using the decay function as an unique identifying tool. ^ The overall conclusion in this dissertation suggests that the investigation of the decay function opens up a completely new venue in studies of short range nuclear properties. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main goal of this dissertation was to study two- and three-nucleon Short Range Correlations (SRCs) in high energy three-body breakup of 3He nucleus in 3He(e, e'NN)N reaction. SRCs are characterized by quantum fluctuations in nuclei during which constituent nucleons partially overlap with each other. A theoretical framework is developed within the Generalized Eikonal Approximation (GEA) which upgrades existing medium-energy methods that are inapplicable for high momentum and energy transfer reactions. High momentum and energy transfer is required to provide sufficient resolution for probing SRCs. GEA is a covariant theory which is formulated through the effective Feynman diagrammatic rules. It allows self-consistent calculation of single and double re-scatterings amplitudes which are present in three-body breakup processes. The calculations were carried out in detail and the analytical result for the differential cross section of 3He(e, e'NN)Nreaction was derived in a form applicable for programming and numerical calculations. The corresponding computer code has been developed and the results of computation were compared to the published experimental data, showing satisfactory agreement for a wide range of values of missing momenta. In addition to the high energy approximation this study exploited the exclusive nature of the process under investigation to gain more information about the SRCs. The description of the exclusive 3He(e, e'NN)N reaction has been done using the formalism of the nuclear decay function, which is a practically unexplored quantity and is related to the conventional spectral function through the integration of the phase space of the recoil nucleons. Detailed investigation showed that the decay function clearly exhibits the main features of two- and three-nucleon correlations. Four highly practical types of SRCs in 3He nucleus were discussed in great detail for different orders of the final state re-interactions using the decay function as an unique identifying tool. The overall conclusion in this dissertation suggests that the investigation of the decay function opens up a completely new venue in studies of short range nuclear properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this research was to develop a theory of high-energy exclusive electrodisintegration of three-nucleon systems on the example of 3He(e, e'NN)N reaction with knocked-out nucleon in the final state. The scattering amplitudes and differential cross section of the reaction were calculated in details within the Generalized Eikonal Approximation(GEA). The manifestly covariant nature of Feynman diagrams derived in GEA allowed us to preserve both the relativistic dynamics and kinematics of the scattering while identifying the low momentum nuclear part of the amplitude with a nonrelativistic nuclear wave function. Numerical calculations of the residual system's total and relative momentum distribution were performed which show reasonable agreement with available experimental data. The theoretical framework of GEA, which was applied previously only for the case of two-body (deuteron) high energy break up reactions, has been practically implemented and shown to provide a valid description for more complex A = 3 systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Standard Model of particle physics consists of the quantum electrodynamics (QED) and the weak and strong nuclear interactions. The QED is the basis for molecular properties, and thus it defines much of the world we see. The weak nuclear interaction is responsible for decays of nuclei, among other things, and in principle, it should also effects at the molecular scale. The strong nuclear interaction is hidden in interactions inside nuclei. From the high-energy and atomic experiments it is known that the weak interaction does not conserve parity. Consequently, the weak interaction and specifically the exchange of the Z^0 boson between a nucleon and an electron induces small energy shifts of different sign for mirror image molecules. This in turn will make the other enantiomer of a molecule energetically favorable than the other and also shifts the spectral lines of the mirror image pair of molecules into different directions creating a split. Parity violation (PV) in molecules, however, has not been observed. The topic of this thesis is how the weak interaction affects certain molecular magnetic properties, namely certain parameters of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopies. The thesis consists of numerical estimates of NMR and ESR spectral parameters and investigations of the effects of different aspects of quantum chemical computations to them. PV contributions to the NMR shielding and spin-spin coupling constants are investigated from the computational point of view. All the aspects of quantum chemical electronic structure computations are found to be very important, which makes accurate computations challenging. Effects of molecular geometry are also investigated using a model system of polysilyene chains. PV contribution to the NMR shielding constant is found to saturate after the chain reaches a certain length, but the effects of local geometry can be large. Rigorous vibrational averaging is also performed for a relatively small and rigid molecule. Vibrational corrections to the PV contribution are found to be only a couple of per cents. PV contributions to the ESR g-tensor are also evaluated using a series of molecules. Unfortunately, all the estimates are below the experimental limits, but PV in some of the heavier molecules comes close to the present day experimental resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PART I

The total cross-section for the reaction 21Ne(α, n)24Mg has been measured in the energy range 1.49 Mev ≤ Ecm ≤ 2.6 Mev. The cross-section factor, S(O), for this reaction has been determined, by means of an optical model calculation, to be in the range 1.52 x 1012 mb-Mev to 2.67 x 1012 mb-Mev, for interaction radii in the range 5.0 fm to 6.6 fm. With S(O) ≈ 2 x 1012 mb-Mev, the reaction 21Ne(α, n)24Mg can produce a large enough neutron flux to be a significant astrophysical source of neutrons.

PART II

The reaction12C(3He, p)14N has been studied over the energy range 12 Mev ≤ Elab ≤ 18 Mev. Angular distributions of the proton groups leading to the lowest seven levels in 14N were obtained.

Distorted wave calculations, based on two-nucleon transfer theory, were performed, and were found to be reliable for obtaining the value of the orbital angular momentum transferred. The present work shows that such calculations do not yield unambiguous values for the spectroscopic factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study systematically the average property of fragmentation reaction and momentum dissipation induced by halo-nuclei in intermediate energy heavy ion collisions for different colliding systems and different beam energies within the isospin dependent quantum molecular dynamics model (IQMD). This study is based on the extended halo-nucleus density distributions, which indicates the average property of loosely inner halo nucleus structure, because the interaction potential and in-medium nucleon-nucleon cross section in IQMD model depend on the density distribution. In order to study the average properties of fragmentation reaction and momentum dissipation induced by halo-nuclei we also compare the results for the halo-nuclear colliding systems with those for corresponding stable colliding systems with same mass under the same incident channel condition. We find that the effect of extended halo density distribution on the fragment multiplicity and nuclear stopping (momentum dissipation) are important for the different beam energies and different colliding systems. For example the extended halo density distributions increase the fragment multiplicity but decrease the nuclear stopping for all of incident channel conditions in this paper.