998 resultados para Norway. Stortinget
Resumo:
Our knowledge about the effect of single-tree influence areas on the physicochemical properties of the underlying mineral soil in forest ecosystems is still limited. This restricts our ability to adequately estimate future changes in soil functioning due to forest management practices. We studied the stand scale spatial variation of different soil organic matter species investigated by 13C NMR spectroscopy, lignin phenol and neutral sugar analysis under an unmanaged mountainous high-elevation Norway spruce (Picea abies L.) forest in central Europe. Multivariate geostatistical approaches were applied to relate the spatial patterns of the different soil organic matter species to topographic parameters, bulk density, oxalate- and dithionite-extractable iron, pH, and the impact of tree distribution. Soil samples were taken from the mineral top soil. Generally, the stand scale distribution patterns of different soil organic matter compounds could be divided into two groups: Those compounds, which were significantly spatially correlated with topography/altitude and those with small scale spatial pattern (range ≤ 10 m) that was closely related to tree distribution. The concentration of plant-derived soil organic matter components, such as lignin, at a given sampling point was significantly spatially related to the distance of the nearest tree (p ≤ 0.05). In contrast, the spatial distribution of mainly microbial-derived compounds (e.g. galactose and mannose) could be attributed to the dominating impact of small-scale topography and the contribution of poorly crystalline iron oxides that were significantly larger in the central depression of the study site compared to crest and slope positions. Our results demonstrate that topographic parameters dominate the distribution of overall topsoil organic carbon (OC) stocks at temperate high-elevation forest ecosystems, particularly in sloped terrain. However, trees superimpose topography-controlled OC biogeochemistry beneath their crown by releasing litter and changing soil conditions in comparison to open areas. This may lead to distinct zones with different mechanisms of soil organic matter degradation and also stabilization in forest stands.
Resumo:
The induction of activity of the enzyme nitrate reductase (NR, EC 1.6.6.1, 1.6.6.2) in needles of Norway spruce (Picea abies[L.] Karst.) by nitrogen dioxide (NO2) was studied under laboratory and field conditions. In fumigation chambers an increase in nitrate reductase activity (NRA) was detected 4 h after the start of the NO2 treatment. During the first 2 days with 100 µg NO2 m−3, NRA reached a constant level and did not change during the following 4 days. At the same level of NO2, NRA was lower in needles from trees grown on NPK-fertilized soil than on non-fertilized soil. After the transfer of spruce trees from fertilized soil to NPK-rich nutrient solution, NRA was transiently increased. This effect was assigned to root injuries causing nitrate transport to the shoot and subsequent induction of NRA. Neither trees on fertilized soil nor trees transferred to NPK-poor nutrient solution had increased NRA unless NO2 was provided. The NO2 gradient in the vicinity of a highway was used to test the long-term effect of elevated levels of NO2 on needle NRA of potted and field-grown spruce trees. Compared with less polluted sites, permanently increased NRAs were detected when NO2 concentrations were above 20 µg m−3. Controls of field measurements some 10 years after the introduction of catalytic converters in cars showed no significant change neither in NO2 levels nor in the decreasing NRA of spruce needles with the distance from the highway.
Resumo:
The 15N ratio of nitrogen oxides (NOx) emitted from vehicles, measured in the air adjacent to a highway in the Swiss Middle Land, was very high [δ15N(NO2) = +5.7‰]. This high 15N abundance was used to estimate long-term NO2 dry deposition into a forest ecosystem by measuring δ15N in the needles and the soil of potted and autochthonous spruce trees [Picea abies (L.) Karst] exposed to NO2 in a transect orthogonal to the highway. δ15N in the current-year needles of potted trees was 2.0‰ higher than that of the control after 4 months of exposure close to the highway, suggesting a 25% contribution to the N-nutrition of these needles. Needle fall into the pots was prevented by grids placed above the soil, while the continuous decomposition of needle litter below the autochthonous trees over previous years has increased δ15N values in the soil, resulting in parallel gradients of δ15N in soil and needles with distance from the highway. Estimates of NO2 uptake into needles obtained from the δ15N data were significantly correlated with the inputs calculated with a shoot gas exchange model based on a parameterisation widely used in deposition modelling. Therefore, we provide an indication of estimated N inputs to forest ecosystems via dry deposition of NO2 at the receptor level under field conditions.