981 resultados para Nonlinear portal frame dynamics


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis we have presented some aspects of the nonlinear dynamics of Nd:YAG lasers including synchronization, Hopf bifurcation, chaos control and delay induced multistability.We have chosen diode pumped Nd:YAG laser with intracavity KTP crystal operating with two mode and three mode output as our model system.Different types of orientation for the laser cavity modes were considered to carry out the studies. For laser operating with two mode output we have chosen the modes as having parallel polarization and perpendicular polarization. For laser having three mode output, we have chosen them as two modes polarized parallel to each other while the third mode polarized orthogonal to them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents analytical and numerical results from studies based on the multiple quantum well laser rate equation model. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated.A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor lasers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Medical fields requires fast, simple and noninvasive methods of diagnostic techniques. Several methods are available and possible because of the growth of technology that provides the necessary means of collecting and processing signals. The present thesis details the work done in the field of voice signals. New methods of analysis have been developed to understand the complexity of voice signals, such as nonlinear dynamics aiming at the exploration of voice signals dynamic nature. The purpose of this thesis is to characterize complexities of pathological voice from healthy signals and to differentiate stuttering signals from healthy signals. Efficiency of various acoustic as well as non linear time series methods are analysed. Three groups of samples are used, one from healthy individuals, subjects with vocal pathologies and stuttering subjects. Individual vowels/ and a continuous speech data for the utterance of the sentence "iruvarum changatimaranu" the meaning in English is "Both are good friends" from Malayalam language are recorded using a microphone . The recorded audio are converted to digital signals and are subjected to analysis.Acoustic perturbation methods like fundamental frequency (FO), jitter, shimmer, Zero Crossing Rate(ZCR) were carried out and non linear measures like maximum lyapunov exponent(Lamda max), correlation dimension (D2), Kolmogorov exponent(K2), and a new measure of entropy viz., Permutation entropy (PE) are evaluated for all three groups of the subjects. Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. The results shows that nonlinear dynamical methods seem to be a suitable technique for voice signal analysis, due to the chaotic component of the human voice. Permutation entropy is well suited due to its sensitivity to uncertainties, since the pathologies are characterized by an increase in the signal complexity and unpredictability. Pathological groups have higher entropy values compared to the normal group. The stuttering signals have lower entropy values compared to the normal signals.PE is effective in charaterising the level of improvement after two weeks of speech therapy in the case of stuttering subjects. PE is also effective in characterizing the dynamical difference between healthy and pathological subjects. This suggests that PE can improve and complement the recent voice analysis methods available for clinicians. The work establishes the application of the simple, inexpensive and fast algorithm of PE for diagnosis in vocal disorders and stuttering subjects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nonlinear dynamics of certain important reaction systems are discussed and analysed in this thesis. The interest in the theoretical and the experimental studies of chemical reactions showing oscillatory dynamics and associated properties is increasing very rapidly. An attempt is made to study some nonlinear phenomena exhibited by the well known chemical oscillator, the BelousovZhabotinskii reaction whose mathematical properties are much in common with the properties of biological oscillators. While extremely complex, this reaction is still much simpler than biological systems at least from the modelling point of view. A suitable model [19] for the system is analysed and the researcher has studied the limit cycle behaviour of the system, for different values of the stoichiometric parameter f, by keeping the value of the reaction rate (k6) fixed at k6 = l. The more complicated three-variable model is stiff in nature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Different theoretical models have tried to investigate the feasibility of recurrent neural mechanisms for achieving direction selectivity in the visual cortex. The mathematical analysis of such models has been restricted so far to the case of purely linear networks. We present an exact analytical solution of the nonlinear dynamics of a class of direction selective recurrent neural models with threshold nonlinearity. Our mathematical analysis shows that such networks have form-stable stimulus-locked traveling pulse solutions that are appropriate for modeling the responses of direction selective cortical neurons. Our analysis shows also that the stability of such solutions can break down giving raise to a different class of solutions ("lurching activity waves") that are characterized by a specific spatio-temporal periodicity. These solutions cannot arise in models for direction selectivity with purely linear spatio-temporal filtering.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the error dynamics for cycled data assimilation systems, such that the inverse problem of state determination is solved at tk, k = 1, 2, 3, ..., with a first guess given by the state propagated via a dynamical system model from time tk − 1 to time tk. In particular, for nonlinear dynamical systems that are Lipschitz continuous with respect to their initial states, we provide deterministic estimates for the development of the error ||ek|| := ||x(a)k − x(t)k|| between the estimated state x(a) and the true state x(t) over time. Clearly, observation error of size δ > 0 leads to an estimation error in every assimilation step. These errors can accumulate, if they are not (a) controlled in the reconstruction and (b) damped by the dynamical system under consideration. A data assimilation method is called stable, if the error in the estimate is bounded in time by some constant C. The key task of this work is to provide estimates for the error ||ek||, depending on the size δ of the observation error, the reconstruction operator Rα, the observation operator H and the Lipschitz constants K(1) and K(2) on the lower and higher modes of controlling the damping behaviour of the dynamics. We show that systems can be stabilized by choosing α sufficiently small, but the bound C will then depend on the data error δ in the form c||Rα||δ with some constant c. Since ||Rα|| → ∞ for α → 0, the constant might be large. Numerical examples for this behaviour in the nonlinear case are provided using a (low-dimensional) Lorenz '63 system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The slow advective-timescale dynamics of the atmosphere and oceans is referred to as balanced dynamics. An extensive body of theory for disturbances to basic flows exists for the quasi-geostrophic (QG) model of balanced dynamics, based on wave-activity invariants and nonlinear stability theorems associated with exact symmetry-based conservation laws. In attempting to extend this theory to the semi-geostrophic (SG) model of balanced dynamics, Kushner & Shepherd discovered lateral boundary contributions to the SG wave-activity invariants which are not present in the QG theory, and which affect the stability theorems. However, because of technical difficulties associated with the SG model, the analysis of Kushner & Shepherd was not fully nonlinear. This paper examines the issue of lateral boundary contributions to wave-activity invariants for balanced dynamics in the context of Salmon's nearly geostrophic model of rotating shallow-water flow. Salmon's model has certain similarities with the SG model, but also has important differences that allow the present analysis to be carried to finite amplitude. In the process, the way in which constraints produce boundary contributions to wave-activity invariants, and additional conditions in the associated stability theorems, is clarified. It is shown that Salmon's model possesses two kinds of stability theorems: an analogue of Ripa's small-amplitude stability theorem for shallow-water flow, and a finite-amplitude analogue of Kushner & Shepherd's SG stability theorem in which the ‘subsonic’ condition of Ripa's theorem is replaced by a condition that the flow be cyclonic along lateral boundaries. As with the SG theorem, this last condition has a simple physical interpretation involving the coastal Kelvin waves that exist in both models. Salmon's model has recently emerged as an important prototype for constrained Hamiltonian balanced models. The extent to which the present analysis applies to this general class of models is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A potential problem with Ensemble Kalman Filter is the implicit Gaussian assumption at analysis times. Here we explore the performance of a recently proposed fully nonlinear particle filter on a high-dimensional but simplified ocean model, in which the Gaussian assumption is not made. The model simulates the evolution of the vorticity field in time, described by the barotropic vorticity equation, in a highly nonlinear flow regime. While common knowledge is that particle filters are inefficient and need large numbers of model runs to avoid degeneracy, the newly developed particle filter needs only of the order of 10-100 particles on large scale problems. The crucial new ingredient is that the proposal density cannot only be used to ensure all particles end up in high-probability regions of state space as defined by the observations, but also to ensure that most of the particles have similar weights. Using identical twin experiments we found that the ensemble mean follows the truth reliably, and the difference from the truth is captured by the ensemble spread. A rank histogram is used to show that the truth run is indistinguishable from any of the particles, showing statistical consistency of the method.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is for mally proved that the general smoother for nonlinear dynamics can be for mulated as a sequential method, that is, obser vations can be assimilated sequentially during a for ward integration. The general filter can be derived from the smoother and it is shown that the general smoother and filter solutions at the final time become identical, as is expected from linear theor y. Then, a new smoother algorithm based on ensemble statistics is presented and examined in an example with the Lorenz equations. The new smoother can be computed as a sequential algorithm using only for ward-in-time model integrations. It bears a strong resemblance with the ensemble Kalman filter . The difference is that ever y time a new dataset is available during the for ward integration, an analysis is computed for all previous times up to this time. Thus, the first guess for the smoother is the ensemble Kalman filter solution, and the smoother estimate provides an improvement of this, as one would expect a smoother to do. The method is demonstrated in this paper in an intercomparison with the ensemble Kalman filter and the ensemble smoother introduced by van Leeuwen and Evensen, and it is shown to be superior in an application with the Lorenz equations. Finally , a discussion is given regarding the properties of the analysis schemes when strongly non-Gaussian distributions are used. It is shown that in these cases more sophisticated analysis schemes based on Bayesian statistics must be used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is concerned with singular perturbations in parabolic problems subjected to nonlinear Neumann boundary conditions. We consider the case for which the diffusion coefficient blows up in a subregion Omega(0) which is interior to the physical domain Omega subset of R(n). We prove, under natural assumptions, that the associated attractors behave continuously as the diffusion coefficient blows up locally uniformly in Omega(0) and converges uniformly to a continuous and positive function in Omega(1) = (Omega) over bar\Omega(0). (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dynamics and stability of solitons in two-dimensional (2D) Bose-Einstein condensates (BEC), with one-dimensional (1D) conservative plus dissipative nonlinear optical lattices, are investigated. In the case of focusing media (with attractive atomic systems), the collapse of the wave packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media with 1D periodic nonlinearity. In the defocusing media (repulsive BEC case) with harmonic trap in one direction and nonlinear optical lattice in the other direction, the stable soliton can exist. Variational approach simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.