882 resultados para Nonlinear control theory
Resumo:
Modern wind turbines are designed in order to work in variable speed opera-tions. To perform this task, these turbines are provided with adjustable speed generators, like the double feed induction generator (DFIG). One of the main advantages of adjustable speed generators is improving the system efficiency compared with _xed speed generators, because turbine speed can be adjusted as a function of wind speed in order to maximize the output power. However, this system requires a suitable speed controller in order to track the optimal reference speed of the wind turbine. In this work, a sliding mode control for variable speed wind turbines is proposed. The proposed design also uses the vector oriented control theory in order to simplify the DFIG dynamical equations. The stability analysis of the proposed controller has been carried out under wind variations and pa-rameter uncertainties using the Lyapunov stability theory. Finally, the simulated results show on the one hand that the proposed controller provides a high-performance dynamic behavior, and on the other hand that this scheme is robust with respect to parameter uncertainties and wind speed variations, which usually appear in real systems.
Resumo:
Presentado en el 13th WSEAS International Conference on Automatic Control, Modelling and Simulation, ACMOS'11
Resumo:
Modern wind turbines are designed in order to work in variable speed operations. To perform this task, wind turbines are provided with adjustable speed generators, like the double feed induction generator. One of the main advantage of adjustable speed generators is improving the system efficiency compared to fixed speed generators, because turbine speed can be adjusted as a function of wind speed in order to maximize the output power. However this system requires a suitable speed controller in order to track the optimal reference speed of the wind turbine. In this work, a sliding mode control for variable speed wind turbines is proposed. An integral sliding surface is used, because the integral term avoids the use of the acceleration signal, which reduces the high frequency components in the sliding variable. The proposed design also uses the vector oriented control theory in order to simplify the generator dynamical equations. The stability analysis of the proposed controller has been carried out under wind variations and parameter uncertainties by using the Lyapunov stability theory. Finally simulated results show, on the one hand that the proposed controller provides a high-performance dynamic behavior, and on the other hand that this scheme is robust with respect to parameter uncertainties and wind speed variations, that usually appear in real systems.
Resumo:
POWERENG 2011
Resumo:
EFTA 2009
Resumo:
ICEM 2010
Resumo:
The nonlinear partial differential equations for dispersive waves have special solutions representing uniform wavetrains. An expansion procedure is developed for slowly varying wavetrains, in which full nonlinearity is retained but in which the scale of the nonuniformity introduces a small parameter. The first order results agree with the results that Whitham obtained by averaging methods. The perturbation method provides a detailed description and deeper understanding, as well as a consistent development to higher approximations. This method for treating partial differential equations is analogous to the "multiple time scale" methods for ordinary differential equations in nonlinear vibration theory. It may also be regarded as a generalization of geometrical optics to nonlinear problems.
To apply the expansion method to the classical water wave problem, it is crucial to find an appropriate variational principle. It was found in the present investigation that a Lagrangian function equal to the pressure yields the full set of equations of motion for the problem. After this result is derived, the Lagrangian is compared with the more usual expression formed from kinetic minus potential energy. The water wave problem is then examined by means of the expansion procedure.
Resumo:
Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, ac- tuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based spec- ifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considera- tions for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area.
This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller.
The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is ex- plored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.
Resumo:
The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.
The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.
We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.
Resumo:
The purpose of this paper is to highlight the central role that the time asymmetry of stability plays in feedback control. We show that this provides a new perspective on the use of doubly-infinite or semi-infinite time axes for signal spaces in control theory. We then focus on the implication of this time asymmetry in modeling uncertainty, regulation and robust control. We point out that modeling uncertainty and the ease of control depend critically on the direction of time. We finally discuss the relationship of this control-based time arrow with the well-known arrows of time in physics. © 2008 IEEE.