946 resultados para Non-structural proteins


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new oligochromatographic assay, Speed-Oligo Novel Influenza A H1N1, was designed and optimized for the specific detection of the 2009 influenza A H1N1 virus. The assay is based on a PCR method coupled to detection of PCR products by means of a dipstick device. The target sequence is a 103-bp fragment within the hemagglutinin gene. The analytical sensitivity of the new assay was measured with serial dilutions of a plasmid that contained the target sequence, and we determined that down to one copy per reaction of the plasmid was reliably detected. Diagnostic performance was assessed with 103 RNAs from suspected cases (40 positive and 63 negative results) previously analyzed with a reference real-time PCR technique. All positive cases were confirmed, and no false-positive results were detected with the new assay. No cross-reactions were observed when other viral strains or clinical samples with other respiratory viruses were tested. According to these results, this new assay has 100% sensitivity and specificity. The turnaround time for the whole procedure was 140 min. The assay may be especially useful for the specific detection of 2009 H1N1 virus in laboratories not equipped with real-time PCR instruments

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To determine the positivity rate of human bocavirus (HBoV) 1 and 3 among children who presented with acute gastroenteritis symptoms during the period of 1994-2004 in the Central-West Region of Brazil, 762 faecal samples were tested using polymerase chain reaction (PCR) for the detection of HBoV DNA. Primers for a segment of the non-structural viral protein 1 (NS1) gene of HBoV-1 and HBoV-3 were used. Twelve HBoV-positive samples were further characterised via genomic sequencing and phylogenetic analysis. Of the samples tested, 5.8% (n = 44) were positive for HBoV-1 or HBoV-3 and co-infection was observed in 14 (31.8%) of the 44 HBoV-positive samples. Nine of the 14 samples were also positive for Rotavirus A and five were positive for Aichi virus. The genomic sequencing of the NS1 partial sequence of 12 HBoV-samples showed that 11 samples were characterised as HBoV-1 and that one was characterised as HBoV-3. The phylogenetic analysis showed that the HBoV-1 samples had a high sequence homology to others previously identified in China, Sweden and Brazil. This is the first study conducted in the Central-West Region of Brazil to detect HBoV-1 and HBoV-3 in faecal samples from children with acute gastroenteritis. Further studies are required to define the role of HBoVs as aetiological agents of gastroenteritis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The goal of treatment of chronic hepatitis C is to achieve a sustained virological response, which is defined as exhibiting undetectable hepatitis C virus (HCV) RNA levels in serum following therapy for at least six months. However, the current treatment is only effective in 50% of patients infected with HCV genotype 1, the most prevalent genotype in Brazil. Inhibitors of the serine protease non-structural protein 3 (NS3) have therefore been developed to improve the responses of HCV-infected patients. However, the emergence of drug-resistant variants has been the major obstacle to therapeutic success. The goal of this study was to evaluate the presence of resistance mutations and genetic polymorphisms in the NS3 genomic region of HCV from 37 patients infected with HCV genotype 1 had not been treated with protease inhibitors. Plasma viral RNA was used to amplify and sequence the HCV NS3 gene. The results indicate that the catalytic triad is conserved. A large number of substitutions were observed in codons 153, 40 and 91; the resistant variants T54A, T54S, V55A, R155K and A156T were also detected. This study shows that resistance mutations and genetic polymorphisms are present in the NS3 region of HCV in patients who have not been treated with protease inhibitors, data that are important in determining the efficiency of this new class of drugs in Brazil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Group A human rotaviruses (HuRVA) are causative agents of acute gastroenteritis. Six viral structural proteins (VPs) and six nonstructural proteins (NSPs) are produced in RV-infected cells. NSP4 is a diarrhoea-inducing viral enterotoxin and NSP4 gene analysis revealed at least 15 (E1-E15) genotypes. This study analysed the NSP4 genetic diversity of HuRVA G2P[4] strains collected in the state of São Paulo (SP) from 1994 and 2006-2010 using reverse transcription-polymerase chain reaction, sequencing and phylogenetic analysis. Forty (97.6%) G2P[4] strains displayed genotype E2; one strain (2.4%) displayed genotype E1. These results are consistent with the proposed linkage between VP4/VP7 (G2P[4]) and the NSP4 (E2) genotype of HuRVA. NSP4 phylogenetic analysis showed distinct clusters, with grouping of most strains by their genotype and collection year, and most strains from SP were clustered together with strains from other Brazilian states. A deduced amino acid sequence alignment for E2 showed many variations in the C-terminal region, including the VP4-binding domain. Considering the ability of NSP4 to generate host immunity, monitoring NSP4 variations, along with those in the VP4 or VP7 protein, is important for evaluating the circulation and pathogenesis of RV. Finally, the presence of one G2P[4]E1 strain reinforces the idea that new genotype combinations emerge through reassortment and independent segregation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hereditary non-structural diseases such as catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT, and the Brugada syndrome as well as structural disease such as hypertrophic cardiomyopathy (HCM) and arrhythmogenic right ventricular cardiomyopathy (ARVC) cause a significant percentage of sudden cardiac deaths in the young. In these cases, genetic testing can be useful and does not require proxy consent if it is carried out at the request of judicial authorities as part of a forensic death investigation. Mutations in several genes are implicated in arrhythmic syndromes, including SCN5A, KCNQ1, KCNH2, RyR2, and genes causing HCM. If the victim's test is positive, this information is important for relatives who might be themselves at risk of carrying the disease-causing mutation. There is no consensus about how professionals should proceed in this context. This article discusses the ethical and legal arguments in favour of and against three options: genetic testing of the deceased victim only; counselling of relatives before testing the victim; counselling restricted to relatives of victims who tested positive for mutations of serious and preventable diseases. Legal cases are mentioned that pertain to the duty of geneticists and other physicians to warn relatives. Although the claim for a legal duty is tenuous, recent publications and guidelines suggest that geneticists and others involved in the multidisciplinary approach of sudden death (SD) cases may, nevertheless, have an ethical duty to inform relatives of SD victims. Several practical problems remain pertaining to the costs of testing, the counselling and to the need to obtain permission of judicial authorities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure. RESULTS: We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae. CONCLUSION: The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Superantigens are defined by their ability to stimulate a large fraction of T cells via interaction with the T cell receptor (TCR) V beta domain. Endogenous superantigens, classically termed minor lymphocyte-stimulating (Mls) antigens, were recently identified as products of open reading frames (ORF) in integrated proviral copies of mouse mammary tumor virus (MMTV). We have described an infectious MMTV homologue of the classical endogenous superantigen Mls-1a (Mtv-7). The ORF molecules of both the endogenous Mtv-7 and the infectious MMTV(SW) interact with T cells expressing the TCR V beta 6, 7, 8.1, and 9 domains. Furthermore, the COOH termini of their ORF molecules, thought to confer TCR specificity, are very similar. Since successful transport of MMTV from the site of infection in the gut to the mammary gland depends on a functional immune system, we were interested in determining the early events after and requirements for MMTV infection. We show that MMTV(SW) infection induces a massive response of V beta 6+ CDC4+ T cells, which interact with the viral ORF. Concomitantly, we observed a B cell response and differentiation that depends on both the presence and stimulation of the superantigen-reactive T cells. Furthermore, we show that B cells are the main target of the initial MMTV infection as judged by the presence of the reverse-transcribed viral genome and ORF transcripts. Thus, we suggest that MMTV infection of B cells leads to ORF-mediated B-T cell interaction, which maintains and possibly amplifies viral infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plaque formation in vaccinia virus is inhibited by the compound N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine (IMCBH). We have isolated a mutant virus that forms wild-type plaques in the presence of the drug. Comparison of wild-type and mutant virus showed that both viruses produced similar amounts of infectious intracellular naked virus in the presence of the drug. In contrast to the mutant, no extracellular enveloped virus was obtained from IMCBH-treated cells infected with wild-type virus. Marker rescue experiments were used to map the mutation conferring IMCBH resistance to the mutant virus. The map position coincided with that of the gene encoding the viral envelope antigen of M(r) 37,000. Sequence analysis of both wild-type and mutant genes showed a single nucleotide change (G to T) in the mutant gene. In the deduced amino acid sequence, the mutation changes the codon for an acidic Asp residue in the wild-type gene to one for a polar noncharged Tyr residue in the mutant.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A vaccinia virus late gene coding for a major structural polypeptide of 11 kDa was sequenced. Although the 5' flanking gene region is very A+T rich, it shows little homology either to the corresponding region of vaccinia early genes or to consensus sequences characteristic of most eukaryotic genes. Three DNA fragments (100, 200, and 500 base pairs, respectively), derived from the flanking region and including the late gene mRNA start site, were inserted into the coding sequence of the vaccinia virus thymidine kinase (TK) early gene by homologous in vivo recombination. Recombinants were selected on the basis of their TK- phenotype. Cells were infected with the recombinant viruses and RNA was isolated at 1-hr intervals. Transcripts initiating either from the TK early promoter, or from the late gene promoter at its authentic position, or from the translocated late gene promoters within the early gene were detected by nuclease S1 mapping. Early after infection, only transcripts from the TK early promoter were detected. Later in infection, however, transcripts were also initiated from the translocated late promoters. This RNA appeared at the same time and in similar quantities as the RNA from the late promoter at its authentic position. No quantitative differences in promoter efficiency between the 100-, 200-, and 500-base-pair insertions were observed. We conclude that all necessary signals for correct regulation of late-gene expression reside within only 100 base pairs of 5' flanking sequence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure.Results: We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae.Conclusion: The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The process of epidermal differentiation involves proliferation, differentiation, migration and maturation of keratinocytes to form an impermeable barrier against water loss and outside environment. It is controlled by highly balanced regulatory machinery, involving many molecules that are still under investigation.Homeobox proteins are involved in body patterning and morphogenesis of organs and are studied as potentially good candidates to regulate this process. In the first project we investigated the role of a protein named HOP which belongs to a group of homeobox proteins. Even if HOP is a small protein almost completely composed of the homeodomain and without DNA binding capacity, it is considered as transcriptional regulator in different tissues. HOP interacts with serum response factor (SRF) and histone deacetylase type 2 (HDAC2). By microarray analysis we found that HOP expression increases in cultured human primary keratinocytes (NHK) which undergo calcium-induced differentiation. HOP protein was localized in granular layer of the epidermis of healthy individuals. Lack of HOP was demonstrated in psoriatic lesions, whereas a strong expression was demonstrated in the lesional skin of patients affected with lichen planus (LP). Since LP is characterized by hypergranulosis while psoriatic lesions by progressive lack of the granular layer, the obtained data indicated that HOP might have a potential function in granular layer of epidermis. To investigate HOP function, we inhibited its expression by using HOP specific StealthRNAi and we overexpressed HOP using lentiviral vectors in differentiating NHK. The conclusion of both experiments indicated that HOP positively regulates the expression of late differentiation markers, such as profilaggrin, loricrin and transglutaminase 1. The in vitro data were next confirmed in vivo using HOP knockout mouse model.The second part of my study involved analysis of mechanisms underlying the pathogenesis of epidermolytic hyperkeratosis (EHK). EHK is a genetic disorder characterized by erythema, skin blistering, keratinocyte hyperproliferation and hyperkeratosis. EHK is caused by mutations in keratin 1 or 10 (K1, K10) which are major structural proteins of differentiated keratinocytes and participate in the cellular scaffold formation. To investigate how the structural proteins carrying mutations alter cellular signaling, we established an in vitro model for EHK by overexpression of one of the most common K10 mutations reported so far (K10R156H), in primary human keratinocytes. In order to mimic the in vivo situation, mutated keratinocytes growing on silicone membranes were subjected to mechanical stretch. We observed strong collapse of KIF in K10R156H keratinocytes when subjected to stretch for 30 minutes. Our data demonstrated stronger activation of p38, a member of MAPK stress signaling pathways, in K10R156H when compared to control cells. We demonstrated also that K10R156H keratinocytes showed an induction of TNF-α and RANTES release in response to stretch.Taken together these studies characterize a novel regulator of epidermal differentiation - HOP and demonstrate new aspects implicated in the pathogenesis of EHK.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stream degradation is the action of deepening the stream bed and widening the banks due to the increasing velocity of water flow. Degradation is pervasive in channeled streams found within the deep to moderately deep loess regions of the central United States. Of all the streams, however, the most severe and widespread entrenchment occurs in western Iowa streams that are tributaries to the Missouri River. In September 1995 the Iowa Department of Transportation awarded a grant to Golden Hills Resource Conservation and Development, Inc. The purpose of the grant, HR-385 "Stream Stabilization in Western Iowa: Structure Evaluation and Design Manual", was to provide an assessment of the effectiveness and costs of various stabilization structures in controlling erosion on channeled streams. A review of literature, a survey of professionals, field observations and an analysis of the data recorded on fifty-two selected structures led to the conclusions presented in the project's publication, Design Manual, Streambed Degradation and Streambank Widening in Western Iowa. Technical standards and specifications for the design and construction of stream channel stabilization structures are included in the manual. Additional information on non-structural measures, monitoring and evaluation of structures, various permit requirements and further resources are also included. Findings of the research project and use and applications of the Design Manual were presented at two workshops in the Loess Hills region. Participants in these workshops included county engineers, private contractors, state and federal agency personnel, elected officials and others. The Design Manual continues to be available through Golden Hills Resource Conservation and Development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability to efficiently produce recombinant proteins in a secreted form is highly desirable and cultured mammalian cells such as CHO cells have become the preferred host as they secrete proteins with human-like post-translational modifications. However, attempts to express high levels of particular proteins in CHO cells may consistently result in low yields, even for non-engineered proteins such as immunoglobulins. In this study, we identified the responsible faulty step at the stage of translational arrest, translocation and early processing for such a "difficult-to-express" immunoglobulin, resulting in improper cleavage of the light chain and its precipitation in an insoluble cellular fraction unable to contribute to immunoglobulin assembly. We further show that proper processing and secretion were restored by over-expressing human signal receptor protein SRP14 and other components of the secretion pathway. This allowed the expression of the difficult-to-express protein to high yields, and it also increased the production of an easy-to-express protein. Our results demonstrate that components of the secretory and processing pathways can be limiting, and that engineering of the secretory pathway may be used to improve the secretion efficiency of therapeutic proteins from CHO cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

α-Crystallins, initially described as the major structural proteins of the lens, belong to the small heat shock protein family. Apart from their function as chaperones, α-crystallins are involved in the regulation of intracellular apoptotic signals. αA- and αB-crystallins have been shown to interfere with the mitochondrial apoptotic pathway triggering Bax pro-apoptotic activity and downstream activation of effector caspases. Differential regulation of α-crystallins has been observed in several eye diseases such as age-related macular degeneration and stress-induced and inherited retinal degenerations. Although the function of α-crystallins in healthy and diseased retina remains poorly understood, their altered expression in pathological conditions argue in favor of a role in cellular defensive response. In the Rpe65(-/-) mouse model of Leber's congenital amaurosis, we previously observed decreased expression of αA- and αB-crystallins during disease progression, which was correlated with Bax pro-death activity and photoreceptor apoptosis. In the present study, we demonstrated that α-crystallins interacted with pro-apoptotic Bax and displayed cytoprotective action against Bax-triggered apoptosis, as assessed by TUNEL and caspase assays. We further observed in staurosporine-treated photoreceptor-like 661W cells stably overexpressing αA- or αB-crystallin that Bax-dependent apoptosis and caspase activation were inhibited. Finally, we reported that the C-terminal extension domain of αA-crystallin was sufficient to provide protection against Bax-triggered apoptosis. Altogether, these data suggest that α-crystallins interfere with Bax-induced apoptosis in several cell types, including the cone-derived 661W cells. They further suggest that αA-crystallin-derived peptides might be sufficient to promote cytoprotective action in response to apoptotic cell death.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract In humans, the skin is the largest organ of the body, covering up to 2m2 and weighing up to 4kg in an average adult. Its function is to preserve the body from external insults and also to retain water inside. This barrier function termed epidermal permeability barrier (EPB) is localized in the functional part of the skin: the epidermis. For this, evolution has built a complex structure of cells and lipids sealing the surface, the stratum corneum. The formation of this structure is finely tuned since it is not only formed once at birth, but renewed all life long. This active process gives a high plasticity and reactivity to skin, but also leads to various pathologies. ENaC is a sodium channel extensively studied in organs like kidney and lung due to its importance in regulating sodium homeostasis and fluid volume. It is composed of three subunits α, ß and r which are forming sodium selective channel through the cell membrane. Its presence in the skin has been demonstrated, but little is known about its physiological role. Previous work has shown that αENaC knockout mice displayed an abnormal epidermis, suggesting a role in differentiation processes that might be implicated in the EPB. The principal aim of this thesis has been to study the consequences for EPB function in mice deficient for αENaC by molecular and physiological means and to investigate the underlying molecular mechanisms. Here, the barrier function of αENaC knockout pups is impaired. Apparently not immediately after birth (permeability test) but 24h later, when evident water loss differences appeared compared to wildtypes. Neither the structural proteins of the epithelium nor the tights junctions showed any obvious alterations. In contrary, stratum corneum lipid disorders are most likely responsible for the barrier defect, accompanied by an impairment of skin surface acidification. To analyze in details this EPB defect, several hypotheses have been proposed: reduced sensibility to calcium which is the key activator far epidermal formation, or modification of ENaC-mediated ion fluxes/currents inside the epidermis. The cellular localization of ENaC and the action in the skin of CAPl, a positive regulator of ENaC, have been also studied in details. In summary, this study clearly demonstrates that ENaC is a key player in the EPB maintenance, because αENaC knockout pups are not able to adapt to the new environment (ex utero) as efficiently as the wildtypes, most likely due to impaired of sodium handling inside the epidermis. Résumé Chez l'homme, la peau est le plus grand organe, couvrant presque 2m2 et pesant près de 4kg chez l'adulte. Sa fonction principale est de protéger l'organisme des agressions extérieures mais également de conserver l'eau à l'intérieur du corps. Cette fonction nommée barrière épithéliale est localisée dans la partie fonctionnelle de la peau : l'épiderme. A cette fin, l'évolution s'est dotée d'une structure complexe composée de cellules et de lipides recouvrant la surface, la couche cornée. Sa formation est finement régulée, car elle n'est pas seulement produite à la naissance mais constamment renouvelée tout au long de la vie, ce qui lui confère une grande plasticité mais ce qui est également la cause de nombreuses pathologies. ENaC est un canal sodique très étudié dans le rein et le poumon pour son importance dans la régulation de l'homéostasie sodique et la régulation du volume du milieu intérieur. Il est composé de 3 sous unités, α, ß et y qui forment un pore sélectif pour le sodium dans les membranes. Ce canal est présent dans la peau mais sa fonction n'y est pas connue. Des travaux précédents ont pu montrer que les souris dont le gène codant pour αENaC a été invalidé présentent un épiderme pathologique, suggérant un rôle dans la différentiation et pourrait même être impliqué dans la barrière épithéliale. Le but de cette thèse fut l'étude de la barrière dans ces souris knockouts avec des méthodes moléculaires et physiologiques et la caractérisation des mécanismes moléculaire impliqués. Dans ce travail, il a été montré que les souris mutantes présentaient un défaut de la barrière. Ce défaut n'est pas visible immédiatement à la naissance (test de perméabilité), mais 24h plus tard, lorsque les tests de perte d'eau transépithéliale montrent une différence évidente avec les animaux contrôles. Ni les protéines de structures ni les jonctions serrées de l'épiderme ne présentaient d'imperfections majeures. A l'inverse, les lipides de la couche cornée présentaient un problème de maturation (expliquant le phénotype de la barrière), certainement consécutif au défaut d'acidification à la surface de la peau que nous avons observé. D'autres mécanismes ont été explorées afin d'investiguer cette anomalie de la barrière, comme la réduction de sensibilité au calcium qui est le principal activateur de la formation de l'épiderme, ou la modification des flux d'ions entre les couches de l'épiderme. La localisation cellulaire d'ENaC, et l'action de son activateur CAPl ont également été étudiés en détails. En résumé, cette étude démontre clairement qu'ENaC est un acteur important dans la formation de la barrière épithéliale, car la peau des knockouts ne s'adapte pas aussi bien que celle des sauvages au nouvel environnement ex utero à cause de la fonction d'ENaC dans les mouvements de sodium au sein même de l'épiderme. Résumé tout public Chez l'homme, la peau est le plus grand organe, couvrant presque 2m2 et pesant près de 4kg chez l'adulte. Sa fonction principale est de protéger l'organisme des agressions extérieures mais également de conserver l'eau à l'intérieur du corps. Cette fonction nommée barrière épithéliale est localisée dans la partie fonctionnelle de la peau : l'épiderme. A cette fin, l'évolution s'est dotée d'une structure complexe composée de cellules et de lipides recouvrant la surface, la couche cornée. Sa formation est finement régulée, car elle n'est pas seulement produite à la naissance mais constamment renouvelée tout au long de la vie, ce qui lui confère une grande plasticité mais ce qui est également la cause de nombreuses maladies. ENaC est une protéine formant un canal qui permet le passage sélectif de l'ion sodium à travers la paroi des cellules. Il est très étudié dans le rein pour son importance dans la récupération du sel lors de la concentration de l'urine. Ce canal est présent dans la peau mais sa fonction n'y est pas connue. Des travaux précédents ont pu montrer que les souris où le gène codant pour αENaC a été invalidé présentent un épiderme pathologique, suggérant un rôle dans la peau et plus particulièrement la fonction de barrière de l'épiderme. Le but de cette thèse fut l'étude de la fonction de barrière dans ces souris mutantes, au niveau tissulaire et cellulaire. Dans ce travail, il a été montré que les souris mutantes présentaient une peau plus perméable que celle des animaux contrôles, grâce à une machine mesurant la perte d'eau à travers la peau. Ce défaut n'est visible que 24h après la naissance, mais nous avons pu montrer que les animaux mutants perdaient quasiment 2 fois plus d'eau que les contrôles. Au niveau moléculaire, nous avons pu montrer que ce défaut provenait d'un problème de maturation des lipides qui composent la barrière de la peau. Cette maturation est incomplète vraisemblablement à cause d'un défaut de mouvement des ions dans les couches les plus superficielles de l'épiderme, et cela à cause de l'absence du canal ENaC. En résumé, cette étude démontre clairement qu'ENaC est un acteur important dans la formation de la barrière épithéliale, car la peau des mutants ne s'adapte pas aussi bien que celle des sauvages au nouvel environnement ex utero à cause de la fonction d'ENaC dans les mouvements de sodium au sein même de l'épiderme.