793 resultados para Non-parametric
Resumo:
The aim of this study was to investigate the relationship between merit pay system and work environment and foremen´s work satisfaction and work motivation. There has been a lot of investigation on rewarding. Less research has been done on previous surveys among the merit pay systems and motivation investigations. According to former surveys, rewarding systems cannot be released from its context. Therefore this survey expanded to deal with work environment. It was also essential to investigate different dimensions of extrinsic and intrinsic motivation and equity of rewarding. Investigation or work motivation and work satisfaction was challenging because both of these concepts have been investigated under quite traditional frame of reference of work motivation theories. In some surveys, the concepts have not been even separated or they have been used even as synonyms. The data were collected with the 193 foremen working in the profit centers of the different chains of the company in the field of retail trade. The questions were: Are the experiences of merit pay system and work environment related to foremen´s work satisfaction and work motivation? Are the backround variables related to foremen´s work satisfaction and work motivation? The data collection was carried out by an electronic inquiry during May 2010. 137 replied from foremen working under merit pay system. The research material was analyzed with PASW-software. Various analyzing methods were used: factor analyses, regression analyses and group of different parametric and non-parametric analyses. In contrast to theoretical framework in the factor analyses work satisfaction and work motivation clustered into the same dimension. As a main result the atmosphere, possibilities to influence and the atmosphere of leading were strongly positively related to foremen´s work satisfaction and work motivation. According to regression analyses these factors were able to explain 55 % of the foremen´s work satisfaction and work motivation. The best explanatory variable was atmosphere. Instead, the backround variables (age, sex, working years, group of profession, education) were not associated with work satisfaction and work motivation.
Resumo:
The objectives of this study were to make a detailed and systematic empirical analysis of microfinance borrowers and non-borrowers in Bangladesh and also examine how efficiency measures are influenced by the access to agricultural microfinance. In the empirical analysis, this study used both parametric and non-parametric frontier approaches to investigate differences in efficiency estimates between microfinance borrowers and non-borrowers. This thesis, based on five articles, applied data obtained from a survey of 360 farm households from north-central and north-western regions in Bangladesh. The methods used in this investigation involve stochastic frontier (SFA) and data envelopment analysis (DEA) in addition to sample selectivity and limited dependent variable models. In article I, technical efficiency (TE) estimation and identification of its determinants were performed by applying an extended Cobb-Douglas stochastic frontier production function. The results show that farm households had a mean TE of 83% with lower TE scores for the non-borrowers of agricultural microfinance. Addressing institutional policies regarding the consolidation of individual plots into farm units, ensuring access to microfinance, extension education for the farmers with longer farming experience are suggested to improve the TE of the farmers. In article II, the objective was to assess the effects of access to microfinance on household production and cost efficiency (CE) and to determine the efficiency differences between the microfinance participating and non-participating farms. In addition, a non-discretionary DEA model was applied to capture directly the influence of microfinance on farm households production and CE. The results suggested that under both pooled DEA models and non-discretionary DEA models, farmers with access to microfinance were significantly more efficient than their non-borrowing counterparts. Results also revealed that land fragmentation, family size, household wealth, on farm-training and off farm income share are the main determinants of inefficiency after effectively correcting for sample selection bias. In article III, the TE of traditional variety (TV) and high-yielding-variety (HYV) rice producers were estimated in addition to investigating the determinants of adoption rate of HYV rice. Furthermore, the role of TE as a potential determinant to explain the differences of adoption rate of HYV rice among the farmers was assessed. The results indicated that in spite of its much higher yield potential, HYV rice production was associated with lower TE and had a greater variability in yield. It was also found that TE had a significant positive influence on the adoption rates of HYV rice. In article IV, we estimated profit efficiency (PE) and profit-loss between microfinance borrowers and non-borrowers by a sample selection framework, which provided a general framework for testing and taking into account the sample selection in the stochastic (profit) frontier function analysis. After effectively correcting for selectivity bias, the mean PE of the microfinance borrowers and non-borrowers were estimated at 68% and 52% respectively. This suggested that a considerable share of profits were lost due to profit inefficiencies in rice production. The results also demonstrated that access to microfinance contributes significantly to increasing PE and reducing profit-loss per hectare land. In article V, the effects of credit constraints on TE, allocative efficiency (AE) and CE were assessed while adequately controlling for sample selection bias. The confidence intervals were determined by the bootstrap method for both samples. The results indicated that differences in average efficiency scores of credit constrained and unconstrained farms were not statistically significant although the average efficiencies tended to be higher in the group of unconstrained farms. After effectively correcting for selectivity bias, household experience, number of dependents, off-farm income, farm size, access to on farm training and yearly savings were found to be the main determinants of inefficiencies. In general, the results of the study revealed the existence substantial technical, allocative, economic inefficiencies and also considerable profit inefficiencies. The results of the study suggested the need to streamline agricultural microfinance by the microfinance institutions (MFIs), donor agencies and government at all tiers. Moreover, formulating policies that ensure greater access to agricultural microfinance to the smallholder farmers on a sustainable basis in the study areas to enhance productivity and efficiency has been recommended. Key Words: Technical, allocative, economic efficiency, DEA, Non-discretionary DEA, selection bias, bootstrapping, microfinance, Bangladesh.
Resumo:
The purpose of this study was to find out whether food-related lifestyle guides and explains product evaluations, specifically, consumer perceptions and choice evaluations of five different food product categories: lettuce, mincemeat, savoury sauce, goat cheese, and pudding. The opinions of consumers who shop in neighbourhood stores were considered most valuable. This study applies means-end chain (MEC) theory, according to which products are seen as means by which consumers attain meaningful goals. The food-related lifestyle (FRL) instrument was created to study lifestyles that reflect these goals. Further, this research has adopted the view that the FRL functions as a script which guides consumer behaviour. Two research methods were used in this study. The first was the laddering interview, the primary aim of which was to gather information for formulating the questionnaire of the main study. The survey consisted of two separate questionnaires. The first was the FRL questionnaire modified for this study. The aim of the other questionnaire was to determine the choice criteria for buying five different categories of food products. Before these analyses could be made, several data modifications were made following MEC analysis procedures. Beside forming FRL dimensions by counting sum-scores from the FRL statements, factor analysis was run in order to elicit latent factors underlying the dimensions. The lifestyle factors found were adventurous, conscientious, enthusiastic, snacking, moderate, and uninvolved lifestyles. The association analyses were done separately for each choice of product as well as for each attribute-consequence linkage with a non-parametric Mann-Whitney U test. The testing variables were FRL dimensions and the FRL lifestyle factors. In addition, the relation between the attribute-consequence linkages and the demographic variables were analysed. Results from this study showed that the choice of product is sequential, so that consumers first categorize products into groups based on specific criteria like health or convenience. It was attested that the food-related lifestyles function as a script in food choice and that the FRL instrument can be used to predict consumer buying behaviour. Certain lifestyles were associated with the choice of each product category. The actual product choice within a product category then appeared to be a different matter. In addition, this study proposes a modification to the FRL instrument. The positive towards advertising FRL dimension was modified to examine many kinds of information search including the internet, TV, magazines, and other people. This new dimension, which was designated as being open to additional information, proved to be very robust and reliable in finding differences in consumer choice behaviour. Active additional information search was linked to adventurous and snacking food-related lifestyles. The results of this study support the previous knowledge that consumers expect to get many benefits simultaneously when they buy food products. This study brought detailed information about the benefits sought, the combination of benefits differing between products and between respondents. Household economy, pleasure and quality were emphasized with the choice of lettuce. Quality was the most significant benefit in choosing mincemeat, but health related benefits were often evaluated as well. The dominant benefits linked to savoury sauce were household economic benefits, expected pleasurable experiences, and a lift in self-respect. The choice of goat cheese appeared not to be an economic decision, self-respect, pleasure, and quality being included in the choice criteria. In choosing pudding, the respondents considered the well-being of family members, and indulged their family members or themselves.
Resumo:
Effective feature extraction for robust speech recognition is a widely addressed topic and currently there is much effort to invoke non-stationary signal models instead of quasi-stationary signal models leading to standard features such as LPC or MFCC. Joint amplitude modulation and frequency modulation (AM-FM) is a classical non-parametric approach to non-stationary signal modeling and recently new feature sets for automatic speech recognition (ASR) have been derived based on a multi-band AM-FM representation of the signal. We consider several of these representations and compare their performances for robust speech recognition in noise, using the AURORA-2 database. We show that FEPSTRUM representation proposed is more effective than others. We also propose an improvement to FEPSTRUM based on the Teager energy operator (TEO) and show that it can selectively outperform even FEPSTRUM
Resumo:
A geometric and non parametric procedure for testing if two finite set of points are linearly separable is proposed. The Linear Separability Test is equivalent to a test that determines if a strictly positive point h > 0 exists in the range of a matrix A (related to the points in the two finite sets). The algorithm proposed in the paper iteratively checks if a strictly positive point exists in a subspace by projecting a strictly positive vector with equal co-ordinates (p), on the subspace. At the end of each iteration, the subspace is reduced to a lower dimensional subspace. The test is completed within r ≤ min(n, d + 1) steps, for both linearly separable and non separable problems (r is the rank of A, n is the number of points and d is the dimension of the space containing the points). The worst case time complexity of the algorithm is O(nr3) and space complexity of the algorithm is O(nd). A small review of some of the prominent algorithms and their time complexities is included. The worst case computational complexity of our algorithm is lower than the worst case computational complexity of Simplex, Perceptron, Support Vector Machine and Convex Hull Algorithms, if d
Resumo:
Spatial and temporal variation in foliar phenology plays a significant role in growth and reproduction of a plant species. Foliar phenology is strongly influenced by environmental factors such as rainfall. A study on phenology of tropical montane forests was undertaken in three different forest patches of the Nilgiri Mountains in peninsular India above 2000 meters ASL. Since August 2000, 500 trees belonging to 70 species of angiosperms were monitored for both vegetative and reproductive phenologies on a monthly basis. Climate data were collected from nearby weather stations. This paper reports results of the study from August 2000 - August 2003 on foliar phenology. Non-parametric correlations and multiple regressions were performed to analyse the influence of environmental factors such as rainfall, temperature and sunshine on foliar phenology. It was found that moisture related factors had a negative influence on the leaf initiation. Circular statistical analyses were performed to understand the seasonality in different phenophases of foliar phenology. Different phenophases of leafing were not significantly seasonal. Results are discussed and compared among three different forest patches on the Nilgiri plateau and also with other montane forest patches across the globe.
Resumo:
Accelerated aging experiments have been conducted on a representative oil-pressboard insulation model to investigate the effect of constant and sequential stresses on the PD behavior using a built-in phase resolved partial discharge analyzer. A cycle of the applied voltage starting from the zero of the positive half cycle was divided into 16 equal phase windows (Φ1 to Φ16) and partial discharge (PD) magnitude distribution in each phase was determined. Based on the experimental results, three stages of aging mechanism were identified. Gumbel's extreme value distribution of the largest element was used to model the first stage of aging process. Second and subsequent stages were modeled using two-parameter Weibull distribution. Spearman's non-parametric rank correlation test statistic and Kolmogrov-Smirnov two sample test were used to relate the aging process of each phase with the corresponding process of the full cycle. To bring out clearly the effect of stress level, its duration and test procedure on the distribution parameters and hence of the aging process, non-parametric ANOVA techniques like Kruskal-Wallis and Fisher's LSD multiple comparison tests were used. Results of the analysis show that two phases (Φ13 and Φ14) near the vicinity of the negative voltage peak were found to contribute significantly to the aging process and their aging mechanism also correlated well with that of the corresponding full cycle mechanism. Attempts have been made to relate these results with the published work of other workers
Resumo:
This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of laminated composite plates using message passing interface (MPI). The design optimization of laminated composite plates being a combinatorially explosive constrained non-linear optimization problem (CNOP), with many design variables and a vast solution space, warrants the use of non-parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the weight and cost of these composite plates, simultaneously, which renders the problem multi-objective. Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a heuristic, the application problem, being computationally intensive, suffers from long execution times due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's collective communication directives, establishes a peer-to-peer relationship between the constituent parallel processes, deviating from the more common master-slave approach, in achieving reduction of computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the vector evaluated genetic algorithm (VEGA) for the same design problem. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Present study performs the spatial and temporal trend analysis of annual, monthly and seasonal maximum and minimum temperatures (t(max), t(min)) in India. Recent trends in annual, monthly, winter, pre-monsoon, monsoon and post-monsoon extreme temperatures (t(max), t(min)) have been analyzed for three time slots viz. 1901-2003,1948-2003 and 1970-2003. For this purpose, time series of extreme temperatures of India as a whole and seven homogeneous regions, viz. Western Himalaya (WH), Northwest (NW), Northeast (NE), North Central (NC), East coast (EC), West coast (WC) and Interior Peninsula (IP) are considered. Rigorous trend detection analysis has been exercised using variety of non-parametric methods which consider the effect of serial correlation during analysis. During the last three decades minimum temperature trend is present in All India as well as in all temperature homogeneous regions of India either at annual or at any seasonal level (winter, pre-monsoon, monsoon, post-monsoon). Results agree with the earlier observation that the trend in minimum temperature is significant in the last three decades over India (Kothawale et al., 2010). Sequential MK test reveals that most of the trend both in maximum and minimum temperature began after 1970 either in annual or seasonal levels. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper presents the formulation and performance analysis of four techniques for detection of a narrowband acoustic source in a shallow range-independent ocean using an acoustic vector sensor (AVS) array. The array signal vector is not known due to the unknown location of the source. Hence all detectors are based on a generalized likelihood ratio test (GLRT) which involves estimation of the array signal vector. One non-parametric and three parametric (model-based) signal estimators are presented. It is shown that there is a strong correlation between the detector performance and the mean-square signal estimation error. Theoretical expressions for probability of false alarm and probability of detection are derived for all the detectors, and the theoretical predictions are compared with simulation results. It is shown that the detection performance of an AVS array with a certain number of sensors is equal to or slightly better than that of a conventional acoustic pressure sensor array with thrice as many sensors.
Resumo:
We study the problem of analyzing influence of various factors affecting individual messages posted in social media. The problem is challenging because of various types of influences propagating through the social media network that act simultaneously on any user. Additionally, the topic composition of the influencing factors and the susceptibility of users to these influences evolve over time. This problem has not been studied before, and off-the-shelf models are unsuitable for this purpose. To capture the complex interplay of these various factors, we propose a new non-parametric model called the Dynamic Multi-Relational Chinese Restaurant Process. This accounts for the user network for data generation and also allows the parameters to evolve over time. Designing inference algorithms for this model suited for large scale social-media data is another challenge. To this end, we propose a scalable and multi-threaded inference algorithm based on online Gibbs Sampling. Extensive evaluations on large-scale Twitter and Face book data show that the extracted topics when applied to authorship and commenting prediction outperform state-of-the-art baselines. More importantly, our model produces valuable insights on topic trends and user personality trends beyond the capability of existing approaches.
Resumo:
Real world biological systems such as the human brain are inherently nonlinear and difficult to model. However, most of the previous studies have either employed linear models or parametric nonlinear models for investigating brain function. In this paper, a novel application of a nonlinear measure of phase synchronization based on recurrences, correlation between probabilities of recurrence (CPR), to study connectivity in the brain has been proposed. Being non-parametric, this method makes very few assumptions, making it suitable for investigating brain function in a data-driven way. CPR's utility with application to multichannel electroencephalographic (EEG) signals has been demonstrated. Brain connectivity obtained using thresholded CPR matrix of multichannel EEG signals showed clear differences in the number and pattern of connections in brain connectivity between (a) epileptic seizure and pre-seizure and (b) eyes open and eyes closed states. Corresponding brain headmaps provide meaningful insights about synchronization in the brain in those states. K-means clustering of connectivity parameters of CPR and linear correlation obtained from global epileptic seizure and pre-seizure showed significantly larger cluster centroid distances for CPR as opposed to linear correlation, thereby demonstrating the superior ability of CPR for discriminating seizure from pre-seizure. The headmap in the case of focal epilepsy clearly enables us to identify the focus of the epilepsy which provides certain diagnostic value. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Resumen: En el presente trabajo se examina la eficiencia técnica de las universidades argentinas de gestión estatal utilizando una metodología no paramétrica. A través del Análisis Envolvente de Datos se caracteriza a cada universidad mediante una única puntuación de eficiencia técnica relativa, lo que permite estimar las mejoras necesarias por comparación con un grupo de referencia. Se considera el modelo básico con orientación al producto, cuyos resultados muestran que las universidades tienen en promedio entre un 23,2% y un 23,9% de ineficiencia. Estos resultados son de utilidad para el diseño de políticas universitarias.
Resumo:
A novel framework is provided for very fast model-based reinforcement learning in continuous state and action spaces. It requires probabilistic models that explicitly characterize their levels of condence. Within the framework, exible, non-parametric models are used to describe the world based on previously collected experience. It demonstrates learning on the cart-pole problem in a setting where very limited prior knowledge about the task has been provided. Learning progressed rapidly, and a good policy found after only a small number of iterations.
Resumo:
[EN] Based on an extensive theoretical review, the aim of this paper is to carry out a closer examination of the differences between exporters according to their commitment to the international market. Once the main disparities are identified by means of a non-parametric test, a logistic analysis based upon data collected from small and medium sized manufacturing firms is conducted in order to construct a classificatory model.