942 resultados para Non-ideal system
Resumo:
Despite extensive progress on the theoretical aspects of spectral efficient communication systems, hardware impairments, such as phase noise, are the key bottlenecks in next generation wireless communication systems. The presence of non-ideal oscillators at the transceiver introduces time varying phase noise and degrades the performance of the communication system. Significant research literature focuses on joint synchronization and decoding based on joint posterior distribution, which incorporate both the channel and code graph. These joint synchronization and decoding approaches operate on well designed sum-product algorithms, which involves calculating probabilistic messages iteratively passed between the channel statistical information and decoding information. Channel statistical information, generally entails a high computational complexity because its probabilistic model may involve continuous random variables. The detailed knowledge about the channel statistics for these algorithms make them an inadequate choice for real world applications due to power and computational limitations. In this thesis, novel phase estimation strategies are proposed, in which soft decision-directed iterative receivers for a separate A Posteriori Probability (APP)-based synchronization and decoding are proposed. These algorithms do not require any a priori statistical characterization of the phase noise process. The proposed approach relies on a Maximum A Posteriori (MAP)-based algorithm to perform phase noise estimation and does not depend on the considered modulation/coding scheme as it only exploits the APPs of the transmitted symbols. Different variants of APP-based phase estimation are considered. The proposed algorithm has significantly lower computational complexity with respect to joint synchronization/decoding approaches at the cost of slight performance degradation. With the aim to improve the robustness of the iterative receiver, we derive a new system model for an oversampled (more than one sample per symbol interval) phase noise channel. We extend the separate APP-based synchronization and decoding algorithm to a multi-sample receiver, which exploits the received information from the channel by exchanging the information in an iterative fashion to achieve robust convergence. Two algorithms based on sliding block-wise processing with soft ISI cancellation and detection are proposed, based on the use of reliable information from the channel decoder. Dually polarized systems provide a cost-and spatial-effective solution to increase spectral efficiency and are competitive candidates for next generation wireless communication systems. A novel soft decision-directed iterative receiver, for separate APP-based synchronization and decoding, is proposed. This algorithm relies on an Minimum Mean Square Error (MMSE)-based cancellation of the cross polarization interference (XPI) followed by phase estimation on the polarization of interest. This iterative receiver structure is motivated from Master/Slave Phase Estimation (M/S-PE), where M-PE corresponds to the polarization of interest. The operational principle of a M/S-PE block is to improve the phase tracking performance of both polarization branches: more precisely, the M-PE block tracks the co-polar phase and the S-PE block reduces the residual phase error on the cross-polar branch. Two variants of MMSE-based phase estimation are considered; BW and PLP.
Resumo:
The sectoral and occupational structure of Britain and West Germany has increasingly changed over the last fifty years from a manual manufacturing based to a non-manual service sector based one. There has been a trend towards more managerial and less menial type occupations. Britain employs a higher proportion of its population in the service sector than in manufacturing compared to West Germany, except in retailing, where West Germany employs twice as many people as Britain. This is a stable sector of the economy in terms of employment, but the requirements of the workforce have changed in line with changes in the industry in both countries. School leavers in the two countries, faced with the same options (FE, training schemes or employment) have opted for the various options in different proportions: young Germans are staying longer in education before embarking on training and young Britons are now less likely to go straight into employment than ten years ago. Training is becoming more accepted as the normal route into employment with government policy leading the way, but public opinion still slow to respond. This study investigates how vocational training has adapted to the changing requirements of industry, often determined by technological advancements. In some areas e.g. manufacturing industry the changes have been radical, in others such as retailing they have not, but skill requirements, not necessarily influenced by technology have changed. Social-communicative skills, frequently not even considered skills and therefore not included in training are coming to the forefront. Vocational training has adapted differently in the two countries: in West Germany on the basis of an established over-defined system and in Britain on the basis of an out-dated ill-defined and almost non-existent system. In retailing German school leavers opt for two or three year apprenticeships whereas British school leavers are offered employment with or without formalised training. The publicly held view of the occupation of sales assistant is one of low-level skill, low intellectual demands and a job anyone can do. The traditional skills - product knowledge, selling and social-communicative skills have steadily been eroded. In the last five years retailers have recognised that a return to customer service, utilising the traditional skills was going to be needed of their staff to remain competitive. This requires training. The German retail training system responded by adapting its training regulations in a long consultative process, whereas the British experimented with YTS, a formalised training scheme nationwide being a new departure. The thesis evaluates the changes in these regulations. The case studies in four retail outlets demonstrate that it is indeed product knowledge and selling and social-communicative skills which are fundamental to being a successful and content sales assistant in either country. When the skills are recognised and taught well and systematically the foundations for career development in retailing are laid in a labour market which is continually looking for better qualified workers. Training, when planned and conducted professionally is appreciated by staff and customers and of benefit to the company. In retailing not enough systematic training, to recognisable standards is carried out in Britain, whereas in West Germany the training system is nevertheless better prepared to show innovative potential as a structure and is in place on which to build. In Britain the reputation of the individual company has a greater role to play, not ensuring a national provision of good training in retailing.
Resumo:
There is currently, no ideal system for studying nasal drug delivery in vitro. The existing techniques such as the Ussing chamber and cell culture all have major disadvantages. Most importantly, none of the existing techniques accurately represent the interior of the nasal cavity, with its airflow and humidity; neither do they allow the investigation of solid dosage forms.The work in this thesis represents the development of an in vitro model system in which the interior characteristics of the nasal cavity are closely represented, and solid or minimal volume dosage forms can be investigated. The complete nasal chamber consists of two sections: a lower tissue, viability chamber and an upper nasal chamber. The lower tissue viability chamber has been shown, using existing tissue viability monitoring techniques, to maintain the viability of a number of epithelial tissues, including porcine and rabbit nasal tissue, and rat ileal and Payers' patch tissue. The complete chamber including the upper nasal chamber has been shown to provide tissue viability for porcine and rabbit nasal tissue above that available using the existing Ussing chamber techniques. Adaptation of the complete system, and the development of the necessary experimental protocols that allow aerosol particle-sizing, together with videography, has shown that the new factors investigated, humidity and airflow, have a measurable effect on the delivered dose from a typical nasal pump. Similarly, adaptation of the chamber to fit under a confocal microscope, and the development of the necessary protocols has shown the effect of surface and size on the penetration of microparticulate materials into nasal epithelial tissues. The system developed in this thesis has been shown to be flexible, in allowing the development of the confocal and particle-sizing systems. For future nasal drug delivery studies, the ability to measure such factors as the size of the delivered system in the nasal cavity, the depth of penetration of the formulation into the tissue are essential. Additionally, to have access to other data such as that obtained from drug transport in the same system, and to have the tissue available for histological examination represents a significant advance in the usefulness of such an in vitro technique for nasal delivery.
Resumo:
Horizontal Subsurface Flow Treatment Wetlands (HSSF TWs) are used by Severn Trent Water as a low-cost tertiary wastewater treatment for rural locations. Experience has shown that clogging is a major operational problem that reduces HSSF TW lifetime. Clogging is caused by an accumulation of secondary wastewater solids from upstream processes and decomposing leaf litter. Clogging occurs as a sludge layer where wastewater is loaded on the surface of the bed at the inlet. Severn Trent systems receive relatively high hydraulic loading rates, which causes overland flow and reduces the ability to mineralise surface sludge accumulations. A novel apparatus and method, the Aston Permeameter, was created to measure hydraulic conductivity in situ. Accuracy is ±30 %, which was considered adequate given that conductivity in clogged systems varies by several orders of magnitude. The Aston Permeameter was used to perform 20 separate tests on 13 different HSSF TWs in the UK and the US. The minimum conductivity measured was 0.03 m/d at Fenny Compton (compared with 5,000 m/d clean conductivity), which was caused by an accumulation of construction fines in one part of the bed. Most systems displayed a 2 to 3 order of magnitude variation in conductivity in each dimension. Statistically significant transverse variations in conductivity were found in 70% of the systems. Clogging at the inlet and outlet was generally highest where flow enters the influent distribution and exits the effluent collection system, respectively. Surface conductivity was lower in systems with dense vegetation because plant canopies reduce surface evapotranspiration and decelerate sludge mineralisation. An equation was derived to describe how the water table profile is influenced by overland flow, spatial variations in conductivity and clogging. The equation is calibrated using a single parameter, the Clog Factor (CF), which represents the equivalent loss of porosity that would reproduce measured conductivity according to the Kozeny-Carman Equation. The CF varies from 0 for ideal conditions to 1 for completely clogged conditions. Minimum CF was 0.54 for a system that had recently been refurbished, which represents the deviation from ideal conditions due to characteristics of non-ideal media such as particle size distribution and morphology. Maximum CF was 0.90 for a 15 year old system that exhibited sludge accumulation and overland flow across the majority of the bed. A Finite Element Model of a 15 m long HSSF TW was used to indicate how hydraulics and hydrodynamics vary as CF increases. It was found that as CF increases from 0.55 to 0.65 the subsurface wetted area increases, which causes mean hydraulic residence time to increase from 0.16 days to 0.18 days. As CF increases from 0.65 to 0.90, the extent of overland flow increases from 1.8 m to 13.1 m, which reduces hydraulic efficiency from 37 % to 12 % and reduces mean residence time to 0.08 days.
Resumo:
P systems or Membrane Computing are a type of a distributed, massively parallel and non deterministic system based on biological membranes. They are inspired in the way cells process chemical compounds, energy and information. These systems perform a computation through transition between two consecutive configurations. As it is well known in membrane computing, a configuration consists in a m-tuple of multisets present at any moment in the existing m regions of the system at that moment time. Transitions between two configurations are performed by using evolution rules which are in each region of the system in a non-deterministic maximally parallel manner. This work is part of an exhaustive investigation line. The final objective is to implement a HW system that evolves as it makes a transition P-system. To achieve this objective, it has been carried out a division of this generic system in several stages, each of them with concrete matters. In this paper the stage is developed by obtaining the part of the system that is in charge of the application of the active rules. To count the number of times that the active rules is applied exist different algorithms. Here, it is presents an algorithm with improved aspects: the number of necessary iterations to reach the final values is smaller than the case of applying step to step each rule. Hence, the whole process requires a minor number of steps and, therefore, the end of the process will be reached in a shorter length of time.
Resumo:
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Resumo:
Successful implementation of fault-tolerant quantum computation on a system of qubits places severe demands on the hardware used to control the many-qubit state. It is known that an accuracy threshold Pa exists for any quantum gate that is to be used for such a computation to be able to continue for an unlimited number of steps. Specifically, the error probability Pe for such a gate must fall below the accuracy threshold: Pe < Pa. Estimates of Pa vary widely, though Pa ∼ 10−4 has emerged as a challenging target for hardware designers. I present a theoretical framework based on neighboring optimal control that takes as input a good quantum gate and returns a new gate with better performance. I illustrate this approach by applying it to a universal set of quantum gates produced using non-adiabatic rapid passage. Performance improvements are substantial comparing to the original (unimproved) gates, both for ideal and non-ideal controls. Under suitable conditions detailed below, all gate error probabilities fall by 1 to 4 orders of magnitude below the target threshold of 10−4. After applying the neighboring optimal control theory to improve the performance of quantum gates in a universal set, I further apply the general control theory in a two-step procedure for fault-tolerant logical state preparation, and I illustrate this procedure by preparing a logical Bell state fault-tolerantly. The two-step preparation procedure is as follow: Step 1 provides a one-shot procedure using neighboring optimal control theory to prepare a physical qubit state which is a high-fidelity approximation to the Bell state |β01⟩ = 1/√2(|01⟩ + |10⟩). I show that for ideal (non-ideal) control, an approximate |β01⟩ state could be prepared with error probability ϵ ∼ 10−6 (10−5) with one-shot local operations. Step 2 then takes a block of p pairs of physical qubits, each prepared in |β01⟩ state using Step 1, and fault-tolerantly prepares the logical Bell state for the C4 quantum error detection code.
Resumo:
The scope of this dissertation is to study the transport phenomena of small molecules in polymers and membranes for gas separation applications, with particular attention to energy efficiency and environmental sustainability. This work seeks to contribute to the development of new competitive selective materials through the characterization of novel organic polymers such as CANALs and ROMPs, as well as through the combination of selective materials obtaining mixed matrix membranes (MMMs), to make membrane technologies competitive with the traditional ones. Kinetic and thermodynamic aspects of the transport properties were investigated in ideal and non-ideal scenarios, such as mixed-gas experiments. The information we gathered contributed to the development of the fundamental understanding related to phenomenon like CO2-induced plasticization and physical aging. Among the most significant results, ZIF-8/PPO MMMs provided materials whose permeability and selectivity were higher than those of the pure materials for He/CO2 separation. The CANALs featured norbornyl benzocyclobutene backbone and thereby introduced a third typology of ladder polymers in the gas separation field, expanding the structural diversity of microporous materials. CANALs have a completely hydrocarbon-based and non-polar rigid backbone, which makes them an ideal model system to investigate structure-property correlations. ROMPs were synthesized by means of the ring opening metathesis living polymerization, which allowed the formation of bottlebrush polymers. CF3-ROMP reveled to be ultrapermeable to CO2, with unprecedented plasticization resistance properties. Mixed-gas experiments in glassy polymer showed that solubility-selectivity controls the separation efficiency of materials in multicomponent conditions. Finally, it was determined that plasticization pressure in not an intrinsic property of a material and does not represent a state of the system, but rather comes from the contribution of solubility coefficient and diffusivity coefficient in the framework of the solution-diffusion model.
Resumo:
In this Thesis we focus on non-standard signatures from CMB polarisation, which might hint at the existence of new phenomena beyond the standard models for Cosmology and Particle physics. With the Planck ESA mission, CMB temperature anisotropies have been observed at the cosmic variance limit, but polarisation remains to be further investigated. CMB polarisation data are important not only because they contribute to provide tighter constraints of cosmological parameters but also because they allow the investigation of physical processes that would be precluded if just the CMB temperature maps were considered. We take polarisation data into account to assess the statistical significance of the anomalies currently observed only in the CMB temperature map and to constrain the Cosmic Birefringence (CB) effect, which is expected in parity-violating extensions of the standard electromagnetism. In particular, we propose a new one-dimensional estimator for the lack of power anomaly capable of taking both temperature and polarisation into account jointly. With the aim of studying the anisotropic CB we develop and perform two different and complementary methods able to evaluate the power spectrum of the CB. Finally, by employing these estimators and methodologies on Planck data we provide new constraints beyond what already known in literature. The measure of CMB polarisation represents a technological challenge and to make accurate estimates, one has to keep an exquisite control of the systematic effects. In order to investigate the impact of spurious signal in forthcoming CMB polarisation experiments, we study the interplay between half-wave plates (HWP) non-idealities and the beams. Our analysis suggests that certain HWP configurations, depending on the complexity of Galactic foregrounds and the beam models, significantly impacts the B-mode reconstruction fidelity and could limit the capabilities of next-generation CMB experiments. We provide also a first study of the impact of non-ideal HWPs on CB.
Resumo:
This thesis aims to illustrate the construction of a mathematical model of a hydraulic system, oriented to the design of a model predictive control (MPC) algorithm. The modeling procedure starts with the basic formulation of a piston-servovalve system. The latter is a complex non linear system with some unknown and not measurable effects that constitute a challenging problem for the modeling procedure. The first level of approximation for system parameters is obtained basing on datasheet informations, provided workbench tests and other data from the company. Then, to validate and refine the model, open-loop simulations have been made for data matching with the characteristics obtained from real acquisitions. The final developed set of ODEs captures all the main peculiarities of the system despite some characteristics due to highly varying and unknown hydraulic effects, like the unmodeled resistive elements of the pipes. After an accurate analysis, since the model presents many internal complexities, a simplified version is presented. The latter is used to linearize and discretize correctly the non linear model. Basing on that, a MPC algorithm for reference tracking with linear constraints is implemented. The results obtained show the potential of MPC in this kind of industrial applications, thus a high quality tracking performances while satisfying state and input constraints. The increased robustness and flexibility are evident with respect to the standard control techniques, such as PID controllers, adopted for these systems. The simulations for model validation and the controlled system have been carried out in a Python code environment.
Resumo:
BACKGROUND: It is well known the association between gastroesophageal reflux disease and asthma. The hyperreactivity of the airways is a characteristic of an asthmatic. Many studies associate the increase of the airways reactivity with gastroesophageal reflux disease. AIM: In this study we have evaluated the effect of the intraluminal exposition to gastric juice of trachea on the reactivity to methacholine from rats submitted to a pulmonary allergic inflammation. METHODS: Group of rats were sensitized and challenged with ovalbumin. After 24 hours the animals were sacrificed, and their tracheae were removed to be cultured with gastric juice. The gastric juice was obtained from a donor rat. Subsequently the segments were placed into plastic plates with RPMI-1640 for incubation, under suitable atmosphere and time. After the period of incubation the segments were put into chambers for the analysis of the contractile response to methacholine. RESULTS: We observed reduction in the contractile response of trachea cultured with gastric juice from allergic rats. This result was confirmed by the pharmacological treatments with compound 48/80 and dissodium cromoglicate (mast cells blockade), L-NAME (nitric oxide inhibitor, NO), capsaicin (neuropeptides depletion) and indomethacin (ciclooxigenase inhibitor). CONCLUSIONS: Our results highlight to the existence of a complex interaction between pulmonary allergy and gastric juice in the airways. The involvement of the non-adrenergic non-cholinergic system, NO, prostanoids and mast cells are directly related to this interaction. We suggest that the reduced contractile response observed in vitro may represent a protector mechanism of the airways. Despite its presence in the human body it can not be observed due to the predominant effects of excitatory the non-adrenergic non-cholinergic system.
Resumo:
The thermo-solvatochromism of 2,6-dibromo-4-[(E)-2-(1-methylpyridinium-4-yl)ethenyl] phenolate, MePMBr(2), has been studied in mixtures of water, W, with ionic liquids, ILs, in the temperature range of 10 to 60 degrees C, where feasible. The objectives of the study were to test the applicability of a recently introduced solvation model, and to assess the relative importance of solute-solvent solvophobic interactions. The ILs were 1-allyl-3-alkylimidazolium chlorides, where the alkyl groups are methyl, 1-butyl, and 1-hexyl, respectively. The equilibrium constants for the interaction of W and the ILs were calculated from density data; they were found to be linearly dependent on N(C), the number of carbon atoms of the alkyl group; van't Hoff equation (log K versus 1/T) applied satisfactorily. Plots of the empirical solvent polarities, E(T) (MePMBr(2)) in kcal mol(-1), versus the mole fraction of water in the binary mixture, chi(w), showed non-linear, i.e., non-ideal behavior. The dependence of E(T) (MePMBr(2)) on chi(w), has been conveniently quantified in terms of solvation by W, IL, and the ""complex"" solvent IL-W. The non-ideal behavior is due to preferential solvation by the IL and, more efficiently, by IL-W. The deviation from linearity increases as a function of increasing N(C) of the IL, and is stronger than that observed for solvation of MePMBr(2) by aqueous 1-propanol, a solvent whose lipophilicity is 12.8 to 52.1 times larger than those of the ILs investigated. The dependence on N(C) is attributed to solute-solvent solvophobic interactions, whose relative contribution to solvation are presumably greater than that in mixtures of water and 1-propanol.
Resumo:
Solid-liquid phase equilibrium modeling of triacylglycerol mixtures is essential for lipids design. Considering the alpha polymorphism and liquid phase as ideal, the Margules 2-suffix excess Gibbs energy model with predictive binary parameter correlations describes the non ideal beta and beta` solid polymorphs. Solving by direct optimization of the Gibbs free energy enables one to predict from a bulk mixture composition the phases composition at a given temperature and thus the SFC curve, the melting profile and the Differential Scanning Calorimetry (DSC) curve that are related to end-user lipid properties. Phase diagram, SFC and DSC curve experimental data are qualitatively and quantitatively well predicted for the binary mixture 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (POP) and 1,2,3-tripalmitoyl-sn-glycerol (PPP), the ternary mixture 1,3-dimyristoyl-2-palmitoyl-sn-glycerol (MPM), 1,2-distearoyl-3-oleoyl-sn-glycerol (SSO) and 1,2,3-trioleoyl-sn-glycerol (OOO), for palm oil and cocoa butter. Then, addition to palm oil of Medium-Long-Medium type structured lipids is evaluated, using caprylic acid as medium chain and long chain fatty acids (EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, gamma-linolenic-octadecatrienoic acid and AA-arachidonic acid), as sn-2 substitutes. EPA, DHA and AA increase the melting range on both the fusion and crystallization side. gamma-linolenic shifts the melting range upwards. This predictive tool is useful for the pre-screening of lipids matching desired properties set a priori.
Resumo:
Epstein-Barr virus is a classic example of a persistent human virus that has caught the imagination of immunologists, virologists and oncologists because of the juxtaposition of a number of important properties. First, the ability of the virus to immortalize B lymphocytes in vitro has provided an antigen presenting cell in which all the latent antigens: of the virus are displayed and are available for systematic study. Second, the virus presents an ideal system for studying the immune parameters that maintain latency and the consequences of disturbing this cell-virus relationship. Third, this wealth of immunological background has provided a platform for elucidating the role of the immune system in protection from viral-associated malignancies of B cell and epithelial cell origin. Finally attention is now being directed towards the development of vaccine formulations which might have broad application in the control of human malignancies.
Resumo:
The principle that alloys are designed to accommodate the manufacture of goods made from them as much as the properties required of them in service has not been widely applied to pressed and sintered P/M aluminium alloys. Most commercial alloys made from mixed elemental blends are identical to standard wrought alloys. Alternatively, alloys can be designed systematically using the phase diagram characteristics of ideal liquid phase sintering systems. This requires consideration of the solubilities of the alloying elements in aluminium, the melting points of the elements, the eutectics they form with aluminium and the nature of the liquid phase. The relative diffusivities are also important. Here we show that Al-Sn, which closely follows these ideal characteristics, has a much stronger sintering response than either Al-Cu or Al-Zn, both of which have at least one non-ideal characteristic. (C) 2001 Elsevier Science B.V. All rights reserved.