964 resultados para Non-enzymatic antioxidants
Resumo:
Objective: C-Reactive protein (CRP) can modulate integrin surface expression on monocytes following Fcγ receptor engagement. We have investigated the signal transduction events causing this phenotypic alteration. Methods: CRP-induced signalling events were examined in THP-1 and primary monocytes, measuring Syk phosphorylation by Western blotting, intracellular Ca2+ ([Ca2+]i) by Indo-1 fluorescence and surface expression of CD11b by flow cytometry. Cytosolic peroxides were determined by DCF fluorescence. Results: CRP induced phosphorylation of Syk and an increase in [Ca2+]i both of which were inhibitable by the Syk specific antagonist, piceatannol. Piceatannol also inhibited the CRP-induced increase in surface CD11b. In addition, pre-treatment of primary monoytes with the Ca2+ mobiliser, thapsigargin, increased CD11b expression; this effect was accentuated in the presence of CRP but was abolished in the presence of the [Ca2+]i chelator, BAPTA. CRP also increased cytosolic peroxide levels; this effect was attenuated by antioxidants (ascorbate, α-tocopherol), expression of surface CD11b not being inhibited by antioxidants alone. Conclusion: CRP induces CD11b expression in monocytes through a peroxide independent pathway involving both Syk phosphorylation and [Ca2+]i release. © Birkhäuser Verlag, 2005.
Resumo:
Biocomposite films comprising a non-crosslinked, natural polymer (collagen) and a synthetic polymer, poly(var epsilon-caprolactone) (PCL), have been produced by impregnation of lyophilised collagen mats with a solution of PCL in dichloromethane followed by solvent evaporation. This approach avoids the toxicity problems associated with chemical crosslinking. Distinct changes in film morphology, from continuous surface coating to open porous format, were achieved by variation of processing parameters such as collagen:PCL ratio and the weight of the starting lyophilised collagen mat. Collagenase digestion indicated that the collagen content of 1:4 and 1:8 collagen:PCL biocomposites was almost totally accessible for enzymatic digestion indicating a high degree of collagen exposure for interaction with other ECM proteins or cells contacting the biomaterial surface. Much reduced collagen exposure (around 50%) was measured for the 1:20 collagen:PCL materials. These findings were consistent with the SEM examination of collagen:PCL biocomposites which revealed a highly porous morphology for the 1:4 and 1:8 blends but virtually complete coverage of the collagen component by PCL in the1:20 samples. Investigations of the attachment and spreading characteristics of human osteoblast (HOB) cells on PCL films and collagen:PCL materials respectively, indicated that HOB cells poorly recognised PCL but attachment and spreading were much improved on the biocomposites. The non-chemically crosslinked, collagen:PCL biocomposites described are expected to provide a useful addition to the range of biomaterials and matrix systems for tissue engineering.
Resumo:
The effects of antioxidants and stabilizers on the oxidative degradation of polyolefins (low density polyethylene [LDPE] and polypropylene [PPJ have been studied after subjecting to prior high temperature processing treatments. The changes in the both chemical and physical properties of unstabilized polymers occurring during processing were found to be strongly dependent on the amount of oxygen present in the mixer. Subsequent thermal and photo-oxidation showed very similar characteristics and the chromophore primarily responsible for:both thermo and photooxidative degradation of unstabilized polymers was found to be hydroperoxide formed during processing. Removal of hydroperoxide by heat treatment in an inert atmosphere although increasing ketonic carbonyl concentration, markedly decreased the rate of photo-oxidation, introducing an induction period similar to that of an unprocessed sample. It was concluded that hydroperoxides are the most important initiators in normally processed polymers during the early stages of photo-oxidation. Antioxidants such as metal dithiocarbamates which act by destroying peroxides into non-radica1 products were found to be efficient melt stabilizers for polyolefins and effective UV stabilizers during the initial photo-oxidation stage, whilst a phenolic antioxidant, n-octadecyl-3-(3',5'-di-terbutyl 4'hydroxypheny1) propionate (Irganox 1076) retarded photo-oxidation rate in the later stages. A typical 'UV absorber' 2-hydroxy-4-octyloxy-benzophenone (HOBP) has a minor thermal antioxidant action but retarded photo-oxidation at all stages. A substituated piperidine derivative, Bis [2.2.6.6-tetramethylpiperidlnyl-4] sebacate (Tinuvin 770) behaved as an pro-oxidant during thermal oxidation of polyolefins but was an effective stabilizer against UV light. The UV absorber, HOBP synergised effectively with both peroxide decomposing antioxidants (metal dithiocarbamates) and a chain-breaking antioxidant (Irganox 1076) during photo-oxidation of the poymers studed whereas the combined effect was additive during thermal oxidation. By contrast, the peroxide decornposers and chain-breaking antioxidant (Irganox 1076) which were effective synergists during thermal oxidation of LDPE· were antagonistic during photo-oxidation. The mechanisms of these processes are discussed.
Resumo:
The potential replacement, partially or fully, of synthetic additives by bio-based alternatives derived from indigenous renewable non-food crop resources offers a market opportunity for a green supply of raw materials for different industrial and health products, with greater involvement of the farming community in crop production while addressing the ever more stringent environmental and pollution laws that now require the use of less potentially toxic/harmful ingredients, even if they are present in relatively small quantities. The work presented here relates to developing a new genre of environmentally-sustainable bio-based antioxidants (AO) for industrial uses that are obtained from extracts of UK-grown rosemary (Rosmarinus officinalis) plant. The performance of these AOs was tested, and their efficacy compared with some common and benchmark synthetic AOs from the same chemical class, in different products including polymers especially for packaging, as well as lubricants, cosmetics and health products. One of the main active ingredients in rosemary is Rosmarinic acid which is a water-soluble compound. This was chemically transformed into a number of ester derivatives, Rosmarinates, targeted for different applications. The parent and the modified antioxidants (the rosmarinates) were characterised and their antioxidancy were examined and tested in linear low-density polyethylene (LLDPE) and in polypropylene (PP) and compared with compounds of similar structure and with other well known synthetic antioxidants used commercially in polyolefins. The results show that antioxidants sourced from rosemary have the added benefit of being highly efficient and intrinsically more active than many synthetic and bio-based alternatives.
Resumo:
The fundamentals of this research were to exploit non-ionic surfactant technology for delivery and administration of vaccine antigens across the oral route and to gain a better understanding of vaccine trafficking. Using a newly developed method for manufacture of non-ionic surfactant vesicles (niosomes and bilosomes) lower process temperatures were adopted thus reducing antigen exposure to potentially damaging conditions. Vesicles prepared by this method offered high protection to enzymatic degradation, with only ~10 % antigen loss measured when vesicles incorporating antigen were exposed to enzyme digestion. Interestingly, when formulated using this new production method, the addition of bile salt to the vesicles offered no advantage in terms of stability within simulated gastro-intestinal conditions. Considering their ability to deliver antigen to their target site, results demonstrated that incorporation of antigen within vesicles enhanced delivery and targeting of the antigen to the Peyer's Patch, again with niosomes and bilosomes offering similar efficiency. Delivery to both the Peyer's patches and mesentery lymphatics was shown to be dose dependent at lower concentrations, with saturation kinetics applying at higher concentrations. This demonstrates that in the formulation of vaccine delivery systems, the lipid/antigen dose ratio is not only a key factor in production cost, but is equally a key factor in the kinetics of delivery and targeting of a vaccine system. © 2013 Controlled Release Society.
Resumo:
The fundamentals of this research were to exploit non-ionic surfactant technology for delivery and administration of vaccine antigens across the oral route and to gain a better understanding of vaccine trafficking. Using a newly developed method for manufacture of non-ionic surfactant vesicles (niosomes and bilosomes) lower process temperatures were adopted thus reducing antigen exposure to potentially damaging conditions. Vesicles prepared by this method offered high protection to enzymatic degradation, with only ~10 % antigen loss measured when vesicles incorporating antigen were exposed to enzyme digestion. Interestingly, when formulated using this new production method, the addition of bile salt to the vesicles offered no advantage in terms of stability within simulated gastro-intestinal conditions. Considering their ability to deliver antigen to their target site, results demonstrated that incorporation of antigen within vesicles enhanced delivery and targeting of the antigen to the Peyer's Patch, again with niosomes and bilosomes offering similar efficiency. Delivery to both the Peyer's patches and mesentery lymphatics was shown to be dose dependent at lower concentrations, with saturation kinetics applying at higher concentrations. This demonstrates that in the formulation of vaccine delivery systems, the lipid/antigen dose ratio is not only a key factor in production cost, but is equally a key factor in the kinetics of delivery and targeting of a vaccine system. © 2013 Controlled Release Society.
Resumo:
Funded by United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel Israel Science Foundation (ISF). Grant Number: 1349 Israel Science Foundation Israel Strategic Alternative Energy Foundation (I-SAEF) BBSRC. Grant Number: BB/L009951/1 Scottish Government Food, Land and People program Society for Applied Microbiology
Resumo:
Funded by United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel Israel Science Foundation (ISF). Grant Number: 1349 Israel Science Foundation Israel Strategic Alternative Energy Foundation (I-SAEF) BBSRC. Grant Number: BB/L009951/1 Scottish Government Food, Land and People program Society for Applied Microbiology
Resumo:
Acknowledgements We thank the Engineering and Physical Sciences Research Council, UK, for a research grant. Funded by Engineering and Physical Sciences Research Council, UK
Resumo:
The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.
Resumo:
The aim of this study was to optimize the aqueous extraction conditions for the recovery of phenolic compounds and antioxidant capacity of lemon pomace using response surface methodology. An experiment based on Box–Behnken design was conducted to analyse the effects of temperature, time and sample-to-water ratio on the extraction of total phenolic compounds, total flavonoids, proanthocyanidins and antioxidant capacity. Sample-to-solvent ratio had a negative effect on all the dependent variables, while extraction temperature and time had a positive effect only on TPC yields and ABTS antioxidant capacity. The optimal extraction conditions were 95 oC, 15 min, and a sample-to-solvent ratio of 1:100 g/ml. Under these conditions, the aqueous extracts had the same content of TPC and TF as well as antioxidant capacity in comparison with those of methanol extracts obtained by sonication. Therefore these conditions could be applied for further extraction and isolation of phenolic compounds from lemon pomace.
Resumo:
Dissolving-grade pulps are commonly used for the production of cellulose derivatives and regenerated cellulose. High cellulose content, low content of non-cellulosic material, high brightness, a uniform molecular weight distribution and high cellulose reactivity are the key features that determine the quality of a dissolving pulp. The first part of this work was an optimization study regarding the application of selected enzymes in different stages of a new purification process recently developed in Novozymes for purifying an eucalypt Kraft pulp into dissolving pulp, as an alternative to the pre-hydrolysis kraft (PHK) process. In addition, a viscosity reduction was achieved by cellulase (endoglucanase) treatment in the beginning of the sequence, while the GH11 and GH10 xylanases contributed to boost the brightness of the final pulp. The second part of the work aimed at exploring different auxiliary enzyme activities together with a key xylanase towards further removal of recalcitrant hemicelluloses from a partially bleached Eucalypt Kraft pulp. The resistant fraction (ca. 6% xylan in pulp) was not hydrolysable by the different combinations of enzymes tested. Production of a dissolving pulp was successful when using a cold caustic extraction (CCE) stage in the end of the sequence O-X-DHCE-X-HCE-D-CCE. The application of enzymes improved process efficiency. The main requirements for the production of a dissolving pulp (suitable for viscose making) were fulfilled: 2,7% residual xylan, 92,4% of brightness, a viscosity within the values of a commercial dissolving pulp and increased reactivity.
Resumo:
Tomato (Lycopersicon esculentum Mill.) is the second most important vegetable crop worldwide and a rich source of hydrophilic (H) and lipophilic (L) antioxidants. The H fraction is constituted mainly by ascorbic acid and soluble phenolic compounds, while the L fraction contains carotenoids (mostly lycopene), tocopherols, sterols and lipophilic phenolics [1,2]. To obtain these antioxidants it is necessary to follow appropriate extraction methods and processing conditions. In this regard, this study aimed at determining the optimal extraction conditions for H and L antioxidants from a tomato surplus. A 5-level full factorial design with 4 factors (extraction time (I, 0-20 min), temperature (T, 60-180 •c), ethanol percentage (Et, 0-100%) and solid/liquid ratio (S/L, 5-45 g!L)) was implemented and the response surface methodology used for analysis. Extractions were carried out in a Biotage Initiator Microwave apparatus. The concentration-time response methods of crocin and P-carotene bleaching were applied (using 96-well microplates), since they are suitable in vitro assays to evaluate the antioxidant activity of H and L matrices, respectively [3]. Measurements were carried out at intervals of 3, 5 and 10 min (initiation, propagation and asymptotic phases), during a time frame of 200 min. The parameters Pm (maximum protected substrate) and V m (amount of protected substrate per g of extract) and the so called IC50 were used to quantify the response. The optimum extraction conditions were as follows: r~2.25 min, 7'=149.2 •c, Et=99.1 %and SIL=l5.0 giL for H antioxidants; and t=l5.4 min, 7'=60.0 •c, Et=33.0% and S/L~l5.0 g/L for L antioxidants. The proposed model was validated based on the high values of the adjusted coefficient of determination (R2.wi>0.91) and on the non-siguificant differences between predicted and experimental values. It was also found that the antioxidant capacity of the H fraction was much higher than the L one.
Resumo:
The use of surfactants to improve enzymatic hydrolysis of the macroalgae Sargassum muticum has been investigated. Visible absorption spectroscopy has been used to quantify the solubilization of both polysaccharides and phlorotannins in the hydrolysates. After total extraction, results showed that Sargassum muticum contained 2.74% (expressed in percent of the dry weight of the algae) of phlorotannins whose 32 % were in the cell wall. This result shows that it is important to access to the parietal phlorotannins. To reach this objective, we chose the enzymatic approach for destructurating the cell wall of the algae. The use of 5% dry weight (DW - 5% by weight of hydrolyzed algae) of an enzymatic mix containing a commercial beta-glucanase, a commercial protease and an alginate lyase extracted from Pseudomonas alginovora led after 3 hours of hydrolysis to the solubilization of 2.43% DW polysaccharides and 0.52% DW phlorotannins. The use of 0.5% volume of the surfactant Triton® X-100 with 10% DW of the enzymatic mix has allowed to reaching the value of 2.63% DW of solubilized phlorotannins, that is 96% of the total phenolic content. The use of non-ionic surfactant, combined to enzymatic hydrolysis, showed an increased efficiency in disrupting cell wall and solubilizing phlorotannins in Sargassum muticum.
Resumo:
This study aimed to identify physiological markers in superficially scalded 'Rocha' pear (Pyrus communis L 'Rocha') that would relate to chlorophyll a fluorescence (CF), allowing a non-invasive diagnosis of the disorder. Conditions chosen before shelf life provided two fruit groups with different developing patterns and severity of superficial scald: T fruit fully developed the disorder in storage, while C fruit developed it progressively throughout shelf life. Principal component analysis (PCA) of all the measured variables, and simple linear correlations among several major parameters and scald index (SI)/shelf life showed that scald and ripening/aging were concurring processes, and that it was not possible to isolate a particular variable that could deliver a direct non-invasive diagnosis of the disorder. For both fruit groups the SI resulted from the balance between the reducing power (OD200) and the content of conjugated trienols (CTos) and alpha-farnesene (alpha-Farn) in the fruit peel. At OD200 > 150 there was a linear relationship between CTos and OD200, suggesting that the level of antioxidants was self-adjusted in order to compensate the CTos level. However, at OD200 < 150 this relationship disappeared. A consistent linear relationship between dos and alpha-Farn existed throughout shelf life in both fruit groups, contrarily to the early storage stage, when those compounds do not relate linearly. The CF variables F-0, F-v/F-m, and the colorimetric variables, L* and h degrees were used in multi-linear regressions with other physiological variables. The regressions were made on one of the fruit groups and validated through the other. Reliable regressions to alpha-Farn and CTos were obtained (R approximate to 0.6; rmsec approximate to rmsep). Our results suggest that a model based on CF and colorimetric parameters could be used to diagnose non-invasively both the contents and the relationship between alpha-Farn and CTos and hence the stage of scald development. (C) 2011 Elsevier By. All rights reserved.