965 resultados para Nitrogen uptake kinetics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the ongoing effects of climate change, phytoplankton are likely to experience enhanced irradiance, more reduced nitrogen, and increased water acidity in the future ocean. Here, we used Thalassiosira pseudonana as a model organism to examine how phytoplankton adjust energy production and expenditure to cope with these multiple, interrelated environmental factors. Following acclimation to a matrix of irradiance, nitrogen source, and CO2 levels, the diatom's energy production and expenditures were quantified and incorporated into an energetic budget to predict how photosynthesis was affected by growth conditions. Increased light intensity and a shift from inline image to inline image led to increased energy generation, through higher rates of light capture at high light and greater investment in photosynthetic proteins when grown on inline image. Secondary energetic expenditures were adjusted modestly at different culture conditions, except that inline image utilization was systematically reduced by increasing pCO2. The subsequent changes in element stoichiometry, biochemical composition, and release of dissolved organic compounds may have important implications for marine biogeochemical cycles. The predicted effects of changing environmental conditions on photosynthesis, made using an energetic budget, were in good agreement with observations at low light, when energy is clearly limiting, but the energetic budget over-predicts the response to inline image at high light, which might be due to relief of energetic limitations and/or increased percentage of inactive photosystem II at high light. Taken together, our study demonstrates that energetic budgets offered significant insight into the response of phytoplankton energy metabolism to the changing environment and did a reasonable job predicting them.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many studies have investigated the effect of an increase in pCO2 on coral calcification and photosynthesis but the physiological consequences are still relatively speculative. We investigated the effects of ocean acidification on zinc incorporation and gross calcification in the scleractinian coral Stylophora pistillata. Zn is an essential element for health and growth of corals. Colonies were maintained at normal pHT (8.1) and at two low-pH conditions (7.8 and 7.5) during 5 weeks. Corals were exposed to 65Zn dissolved in seawater to assess uptake rates of this element. After 5 weeks, 65Zn activity measured in the whole coral and in the two compartments: tissue and skeleton, differed significantly between pH conditions with concentration factors higher at pHT 8.1, compared to lower pH. Zn is therefore taken less efficiently by corals at reduced pH. Their gross calcification, as measured by 45Ca incorporation, photosynthesis and photosynthetic efficiency did not change with pH even at the lowest level.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pteris vittata, the first reported arsenic hyperaccumulating plant, is potentially used in phytoremediation of arsenic, as it can accumulate up to 2.3% of arsenic in its fronds. In this study, the mechanisms of arsenic tolerance, uptake and transformation were studied in the plant. Arsenic species were analyzed by HPLC-AFS. Results showed that arsenic was mainly accumulated in leaflets, and inorganic arsenate and arsenite were only species in P. vittata. Arsenite was the predominant species in leaflets, whereas arsenate was the predominant species in roots. Arsenic induced the synthesis of thiol containing compounds in P. vittata. As-induced thiol was purified by a novel method: covalent chromatography following preparative HPLC. The purified thiol was characterized as a phytochelatin with two units (PC2). ^ In P. vittata, enhanced tolerance likely results from unusual intracellular detoxification mechanisms. Although PC-dependent sequestration of arsenic into vacuoles is essential for nonhyperaccumulators, this sequestration is not the major arsenic tolerance mechanisms in this arsenic hyperaccumulator. PC-independent sequestration of arsenic is likely the major arsenic tolerance mechanism. PC-dependent arsenic detoxification is probably a supplement to this major mechanism. ^ Interactions between arsenic and phosphate were studied. Under hydroponic condition, arsenic supply decreased the concentrations of phosphate in roots. In soil, arsenic increased the concentrations of phosphate in roots. Arsenic concentrations in rachises and leaflets were not affected by arsenic supply in either hydroponic or soil system. Phosphate decreased arsenic accumulation in roots, rachises and leaflets in the hydroponic system. ^ The uptake kinetics of arsenate, arsenite, monomethyl arsinic acid (MMA), dimethyl arsonic acid, and phosphate were studied in P. vittata. Phosphate uptake systems in Pteris vittata cannot distinguish phosphate and As(V), resulting in As hyperaccumulation. Arsenic hyperaccumulation in this plant is an inevitable consequence during phosphate acquisition. Arsenate, arsenite and MMA are transported via the phosphate uptake systems. The co-transport of arsenite/phosphate and MMA/phosphate is reported for the first time in plants. These unique phenomena are useful for understanding arsenic hyperaccumulation and the evolution of this capacity in P. vittata. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This dissertation research project addressed the question of how hydrologic restoration of the Everglades is impacting the nutrient dynamics of marsh ecosystems in the southern Everglades. These effects were analyzed by quantifying nitrogen (N) cycle dynamics in the region. I utilized stable isotope tracer techniques to investigate nitrogen uptake and cycling between the major ecosystem components of the freshwater marsh system. I recorded the natural isotopic signatures (δ15N and δ 13C) for major ecosystem components from the three major watersheds of the Everglades: Shark River Slough, Taylor Slough, and C-111 basin. Analysis of δ15 N and δ13C natural abundance data were used to demonstrate the spatial extent to which nitrogen from anthropogenic or naturally enriched sources is entering the marshes of the Everglades. In addition, I measured the fluxes on N between various ecosystem components at both near-canal and estuarine ecotone locations. Lastly, I investigated the effect of three phosphorus load treatments (0.00 mg P m-2, 6.66 mg P m-2, and 66.6 mg P m-2) on the rate and magnitude of ecosystem N-uptake and N-cycling. The δ15N and δ13C natural abundance data supported the hypothesis that ecosystem components from near-canal sites have heavier, more enriched δ 15N isotopic signatures than downstream sites. The natural abundance data also showed that the marshes of the southern Everglades are acting as a sink for isotopically heavier, canal-borne dissolved inorganic nitrogen (DIN) and a source for "new" marsh derived dissolved organic nitrogen (DON). In addition, the 15N mesocosm data showed the rapid assimilation of the 15N tracer by the periphyton component and the delayed N uptake by soil and macrophyte components in the southern Everglades.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs nitrogen fixation rates, computed from a collection of source data sets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitrogen requirements at bulb initiation for production of intermediate-day onions Article in Acta horticulturae · October 2016 DOI: 10.17660/ActaHortic.2016.1142.11 1st Rui Machado 16.44 · Universidade de Évora 2nd David R. Bryla 30.16 · United States Department of Agriculture Abstract Nitrogen requirements at bulb initiation for production of intermediate-day onions Authors: R.M.A. Machado, D.R. Bryla Keywords: Allium cepa, crop growth, nitrogen uptake, soil nitrate Abstract: The effect of nitrogen application on growth, nitrogen (N) uptake, yield, and quality of intermediate-day onion (Allium cepa 'Guimar') was evaluated in the field in southern Portugal. Plants were fertilized with 30 kg ha-1 N at transplanting, 10 kg ha-1 N at 29 days after transplanting (DAT) during early leaf growth, and with 0, 20, 40 and 60 kg ha-1 N at 51 DAT at the initiation of bulbing. The root system of plants in each treatment were concentrated in the top 0.1 m of soil and limited to 0.3 m depth but neither root length density nor rooting depth were affected by N application during later stages of bulb development. Leaf and bulb dry matter, on the other hand, increased linearly with N rate during bulb growth (85 DAT) and at harvest (114 DAT), respectively. Soil nitrate-N (NO3-N) at 0-0.3 m depth likewise increased linearly with N rate during bulb growth but declined from 15-30 mg kg-1 at bulbing to >10 mg kg-1 in each treatment by harvest. A substantial amount of N in the plants, which ranged from 302-525 mg, was taken up from the soil. Application of 60 kg ha-1 N resulted in luxury consumption. Yield (fresh bulb weight) increased from 0.19 kg plant-1 with no N at bulbing to as much as 0.28 kg plant-1 with 60 kg ha-1 N. Bulbs harvested from plants fertilized 40-60 kg ha-1 N averaged 8.2-8.5 cm in diameter, while those from plants with no N at bulbing averaged only 7.2 cm in diameter. Application of N fertilizer is thus recommended at bulbing to increase N uptake, yield, and bulb size of intermediate-day onions, particularly in dry Mediterranean climates where many onions are produced. Other components of quality, including neck diameter, bulb water content, total soluble solids, and juice pH, were not affect by N applied at bulbing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The collective purpose of these two studies was to determine a link between the V02 slow component and the muscle activation patterns that occur during cycling. Six, male subjects performed an incremental cycle ergometer exercise test to determine asub-TvENT (i.e. 80% of TvENT) and supra-TvENT (TvENT + 0.75*(V02 max - TvENT) work load. These two constant work loads were subsequently performed on either three or four occasions for 8 mins each, with V02 captured on a breath-by-breath basis for every test, and EMO of eight major leg muscles collected on one occasion. EMG was collected for the first 10 s of every 30 s period, except for the very first 10 s period. The V02 data was interpolated, time aligned, averaged and smoothed for both intensities. Three models were then fitted to the V02 data to determine the kinetics responses. One of these models was mono-exponential, while the other two were biexponential. A second time delay parameter was the only difference between the two bi-exponential models. An F-test was used to determine significance between the biexponential models using the residual sum of squares term for each model. EMO was integrated to obtain one value for each 10 s period, per muscle. The EMG data was analysed by a two-way repeated measures ANOV A. A correlation was also used to determine significance between V02 and IEMG. The V02 data during the sub-TvENT intensity was best described by a mono-exponential response. In contrast, during supra-TvENT exercise the two bi-exponential models best described the V02 data. The resultant F-test revealed no significant difference between the two models and therefore demonstrated that the slow component was not delayed relative to the onset of the primary component. Furthermore, only two parameters were deemed to be significantly different based upon the two models. This is in contrast to other findings. The EMG data, for most muscles, appeared to follow the same pattern as V02 during both intensities of exercise. On most occasions, the correlation coefficient demonstrated significance. Although some muscles demonstrated the same relative increase in IEMO based upon increases in intensity and duration, it cannot be assumed that these muscles increase their contribution to V02 in a similar fashion. Larger muscles with a higher percentage of type II muscle fibres would have a larger increase in V02 over the same increase in intensity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foreword 1. BACKGROUND AND OBJECTIVES (pdf, 0.1 Mb) 2. 2004 WORKSHOP SUMMARY (pdf, < 0.1 Mb) 2.1. What have we learned from the enrichment experiments? 2.2 What are the outstanding questions? 2.3 Recommendations for SEEDS-II 3. EXTENDED ABSTRACTS OF THE 2004 WORKSHOP 3.1 Synthesis of the Iron Enrichment Experiments: SEEDS and SERIES (pdf, 0.5 Mb) Iron fertilization experiment in the western subarctic Pacific (SEEDS) by Atsushi Tsuda The response of N and Si to iron enrichment in the Northeast Pacific Ocean: Results from SERIES by David Timothy, C.S. Wong, Yukihiro Nojiri, Frank A. Whitney, W. Keith Johnson and Janet Barwell-Clarke 3.2 Biological and Physiological Responses (pdf, 0.2 Mb) Zooplankton responses during SEEDS by Hiroaki Saito Phytoplankton community response to iron and temperature gradient in the NW and NE subarctic Pacific Ocean by Isao Kudo, Yoshifumi Noiri, Jun Nishioka, Hiroshi Kiyosawa and Atsushi Tsuda SERIES: Copepod grazing on diatoms by Frank A. Whitney, Moira Galbraith, Janet Barwell-Clarke and Akash Sastri The Southern Ocean Iron Enrichment Experiment: The nitrogen uptake response by William P. Cochlan and Raphael M. Kudela 3.3 Biogeochemical Responses (pdf, 0.5 Mb) What have we learned regarding iron biogeochemistry from iron enrichment experiments? by Jun Nishioka, Shigenobu Takeda and W. Keith Johnson Iron dynamics and temporal changes of iron speciation in SERIES by W. Keith Johnson, C.S. Wong, Nes Sutherland and Jun Nishioka Dissolved organic matter dynamics during SEEDS and SERIES experiments by Takeshi Yoshimura and Hiroshi Ogawa Formation of transparent exopolymer particles during the in-situ iron enrichment experiment in the western subarctic Pacific (SEEDS) by Shigenobu Takeda, Neelam Ramaiah, Ken Furuya and Takeshi Yoshimura Atmospheric measurement by Mitsuo Uematsu 3.4 Prediction from Models (pdf, 0.3 Mb) Modelling iron limitation in the North Pacific by Kenneth L. Denman and M. Angelica Peña A proposed model of the SERIES iron fertilization patch by Debby Ianson, Christoph Voelker and Kenneth L. Denman 4. LIST OF PARTICIPANTS FOR THE 2004 WORKSHOP (pdf, < 0.1 Mb) APPENDIX 1 Report of the 2000 Planning Workshop on Designing the Iron Fertilization Experiment in the Subarctic Pacific (pdf, 1 Mb) APPENDIX 2 Terms of Reference for the Advisory Panel on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 3 Historical List of Advisory Panel Members on Iron fertilization experiment in the subarctic Pacific Ocean (pdf, < 0.1 Mb) APPENDIX 4 IFEP-AP Annual Reports (pdf, 0.1 Mb) APPENDIX 5 PICES Press Articles (pdf, 0.6 Mb) (194 page document)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O uso de biomassas para biossorção de metais pesados é bem documentado na literatura e vários tipos de espécies de microrganismos e algas já foram testados. A maior parte destes trabalhos foi realizada com biomassa seca para prevenir qualquer resposta metabólica indesejável. Vários estudos na literatura sugerem o uso de biomassa seca sobre condições moderadas, tais como secagem ao sol; por outro lado, vários trabalhos recomendam a faixa de 313K a 353K para garantir completa inativação da biomassa. O efeito da biomassa seca ao sol a 303K e seca a 333K em estufa na remoção de Cd2+ é aqui reportado. A avaliação dos resultados foi baseada na cinética e capacidade de remoção do metal pela alga Sargassum filipendula. Os resultados indicam que a adsorção máxima de metal não foi notadamente reduzida quando a biomassa seca em estufa foi usada, para concentrações de cádmio na faixa de 10,0 a 500,0 mg L-1. O estudo cinético realizado indicou que o modelo de pseudo segunda ordem ajustou melhor os dados experimentais, tanto para uma solução diluída (10 mg L-1) quanto para a concentrada (100 mg L-1). Em ambos os casos, os efeitos da secagem em estufa, a 60C refletiu-se suavemente na remoção do metal. Os dados experimentais foram melhor ajustados pelo modelo de Langmuir em comparação com o modelo de Freundlich. Análises termogravimétricas mostraram que não havia dano estrutural no biossorvente devido à secagem em estufa. O espectro de infravermelho não indicou diferença entre a biomassa in natura e seca. O efeito da temperatura na biossorção do metal significativo na faixa de 303K a 328K, refletindo-se na capacidade de remoção do cádmio

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to investigate the allelopathic activities between 3 Potamogeton spp. (Potamogeton maackianus, Potamogeton malaianus and Potamogeton pectinatus) and the toxic cyanobacteria (Microcystis aeruginosa). All Potamogeton spp inhibited the growth of M. aeruginosa in both coexistence and exudates experiments. Inhibition of M. aeruginosa growth by plant exudates depended strongly on the biomass of P malaianus. Initial pH (6.5-9.8) did not influence the inhibitory effects of P. malaianus exudates. However, the M. aeruginosa inhibited the net photosynthesis and respiration of all three pondweed test spp.. The decreases in photosynthesis and respiration were probably caused by the toxic compounds released by M. aeruginosa, rather than its shading effects. The M. aeruginosa also decreased the nutrients (phosphorus and nitrogen) uptake rates of macrophytes. The absorption rates of phosphorus and nitrogen and net photosynthesis were decreased sharply. These results will help to restore submerged plants in eutrophic waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223 K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123 K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i.e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally. ©2013 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Assessment method for ecological condition of Xiangxi River system was studied by using 13 candidate metrics of epilithic diatom which can reflect conditions in pH, salinity, nitrogen uptake metabolism, oxygen requirements, saprobity, trophic state, morphological character and pollution tolerant capability etc. By one-way ANOVA, the metrics of relative abundance of acidobiontic algae (ACID), freshwater algae (FRESH), high oxygen requirement (HIGH-O), eutraphentic state (EUTRA) and mobile taxa ( MOBILE) were suitable for distinguishing sites in different conditions. Then, the river diatom index (RDI) composed of these five metrics was used to evaluate ecological condition of the river. The results showed that the healthiest sites were in the Guanmenshan Natural Reserve ( with the mean RDI of 79.73). The sites located in tributary of Jiuchong River also owned excellent state (mean RDI of 78.25). Mean RDI of another tributary - Gufu River and the main river were 70.85 and 68.45 respectively, and the unhealthiest tributary was Gaolan River (with mean RDI of 65.64). The mean RDI for all the 51 sites was 71.40. The competence of RDI was discussed with comparison of evaluation results of DAIpo and TDI, it can be concluded that multimetrics is more competent in assessment task.