985 resultados para Nitrate reductase enzyme


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flowering plants require light for chlorophyll synthesis. Early studies indicated that the dependence on light for greening stemmed in part from the light-dependent reduction of the chlorophyll intermediate protochlorophyllide to the product chlorophyllide. Light-dependent reduction of protochlorophyllide by flowering plants is contrasted by the ability of nonflowering plants, algae, and photosynthetic bacteria to reduce protochlorophyllide and, hence, synthesize (bacterio) chlorophyll in the dark. In this report, we functionally complemented a light-independent protochlorophyllide reductase mutant of the eubacterium Rhodobacter capsulatus with an expression library composed of genomic DNA from the cyanobacterium Synechocystis sp. PCC 6803. The complemented R. capsulatus strain is capable of synthesizing bacteriochlorophyll in the light, thereby indicating that a chlorophyll biosynthesis enzyme can function in the bacteriochlorophyll biosynthetic pathway. However, under dark growth conditions the complemented R. capsulatus strain fails to synthesize bacteriochlorophyll and instead accumulates protochlorophyllide. Sequence analysis demonstrates that the complementing Synechocystis genomic DNA fragment exhibits a high degree of sequence identity (53-56%) with light-dependent protochlorophyllide reductase enzymes found in plants. The observation that a plant-type, light-dependent protochlorophyllide reductase enzyme exists in a cyanobacterium indicates that light-dependent protochlorophyllide reductase evolved before the advent of eukaryotic photosynthesis. As such, this enzyme did not arise to fulfill a function necessitated either by the endosymbiotic evolution of the chloroplast or by multicellularity; rather, it evolved to fulfill a fundamentally cell-autonomous role.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Haloferax mediterranei is a denitrifying haloarchaeon using nitrate as a respiratory electron acceptor under anaerobic conditions in a reaction catalysed by pNarGH. Other ions such as bromate, perchlorate and chlorate can also be reduced. Methods: Hfx. mediterranei cells were grown anaerobically with nitrate as electron acceptor and chlorate reductase activity measured in whole cells and purified nitrate reductase. Results: No genes encoding (per)chlorate reductases have been detected either in the Hfx. mediterranei genome or in other haloarchaea. However, a gene encoding a chlorite dismutase that is predicted to be exported across the cytoplasmic membrane has been identified in Hfx. mediterranei genome. Cells did not grow anaerobically in presence of chlorate as the unique electron acceptor. However, cells anaerobically grown with nitrate and then transferred to chlorate-containing growth medium can grow a few generations. Chlorate reduction by the whole cells, as well as by pure pNarGH, has been characterised. No clear chlorite dismutase activity could be detected. Conclusions: Hfx. mediterranei pNarGH has its active site on the outer-face of the cytoplasmic membrane and reacts with chlorate and perchlorate. Biochemical characterisation of this enzymatic activity suggests that Hfx. mediterranei or its pure pNarGH could be of great interest for waste water treatments or to better understand biological chlorate reduction in early Earth or Martian environments. General significance: Some archaea species reduce (per)chlorate. However, results here presented as well as those recently reported by Liebensteiner and co-workers [1] suggest that complete perchlorate reduction in archaea follows different rules in terms of biological reactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coral cays form part of the Australian Great Barrier Reef. Coral cays with high densities of seabirds are areas of extreme nitrogen (N) enrichment with deposition rates of up to 1000 kg N ha(-1) y(-1). The ways in which N sources are utilised by coral cay plants, N is distributed within the cay, and whether or not seabird-derived N moves from cay to surrounding marine environments were investigated. We used N metabolite analysis, N-15 labelling and N-15 natural abundance (delta(15)N) techniques. Deposited guano-derived uric acid is hydrolysed to ammonium (NH4+) and gaseous ammonia (NH3). Ammonium undergoes nitrification, and nitrate (NO3-) and NH4+ were the main forms of soluble N in the soil. Plants from seabird rookeries have a high capacity to take up and assimilate NH4+, are able to metabolise uric acid, but have low rates of NO3- uptake and assimilation. We concluded that NH4+ is the principal source of N for plants growing at seabird rookeries, and that the presence of NH4+ in soil and gaseous NH3 in the atmosphere inhibits assimilation of NO3-, although NO3- is taken up and stored. Seabird guano, Pisonia forest soil and vegetation were similarly enriched in N-15 suggesting that the isotopic enrichment of guano (delta(15)N 9.9parts per thousand) carries through the forest ecosystem. Soil and plants from woodland and beach environments had lower delta(15)N (average 6.5parts per thousand) indicating a lower contribution of bird-derived N to the N nutrition of plants at these sites. The aquifer under the cay receives seabird-derived N leached from the cay and has high concentrations of N-15-enriched NO3- (delta(15)N 7.9parts per thousand). Macroalgae from reefs with and without seabirds had similar delta(15)N values of 2.0-3.9parts per thousand suggesting that reef macroalgae do not utilise N-15-enriched seabird-derived N as a main source of N. At a site beyond the Heron Reef Crest, macroalgae had elevated delta(15)N of 5.2parts per thousand, possibly indicating that there are locations where macroalgae access isotopically enriched aquifer-derived N. Nitrogen relations of Heron Island vegetation are compared with other reef islands and a conceptual model is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bacillus thuringiensis (Bt) transgenic cotton has shown changes of vegetative and reproductive growth characteristics. The objective of this study was to investigate the physiological change of nitrogen metabolism that related closely to the growth in Bt cotton cultivars. The study Was undertaken on two 131 transgenic cotton cultivars and their parents, one conventional (Xingyang822) and recurrent parent (Sumian No. 9), the other a hybrid (Kumian No. 1) and female parent (Yumian No. 1), during the 2001 and 2002 growing seasons at the Yangzhou University Farm, Yangzhou, China. In the 2001 study, The results indicated that the Bt cotton cultivars were higher than their parents in leaf total nitrogen, free amino acid and soluble protein content, greater in NR and GPT activity, and lower in protease activity, during peak square and boll developing period. The biggest increase of total nitrogen was at peak boll period, which increased by 36.01 and 18.96% for Kumian No. I and Xingyang822, respectively. There were similar results for free amino acid and soluble protein content. The results showed further in 2002 study that NR activity increased dramatically at peak square and early boll open period, the biggest increase at early boll open period, with Kumian No. I and Xingyan,822 being 87.5 and 61.4% higher than their parent, respectively, the biggest increase of GPT activity was at peak boll period, with Kumian No. I and Xingyang822 being 39.1 and 29.1% higher than their parent, respectively. However, protease activity of Bt cultivars reduced significantly before flowering and early boll open period, the biggest decrease was before flowering period, with Kumian No. I being more than 30%, Xingyang822 being 26.5% at peak square period. Moreover, the boll total nitrogen content reduced sharply. The results suggest that the Bt cotton cultivars have higher intensity of leaf nitrogen metabolism than their parent, especially during square and boll development period. It is disadvantage for square development and earlier boll maturity under high nitrogen condition. The cultural practice should aim at reducing leaf nitrogen metabolic strength and keep the balance of vegetative and reproductive growth. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of the eukaryotic release factor 1 (eRF1) in translation termination has previously been established in yeast; however, only limited characterization has been performed on any plant homologs. Here, we demonstrate that cosuppression of eRF1-1 in Arabidopsis (Arabidopsis thaliana) has a profound effect on plant morphology, resulting in what we term the broomhead phenotype. These plants primarily exhibit a reduction in internode elongation causing the formation of a broomhead-like cluster of malformed siliques at the top of the inflorescence stem. Histological analysis of broomhead stems revealed that cells are reduced in height and display ectopic lignification of the phloem cap cells, some phloem sieve cells, and regions of the fascicular cambium, as well as enhanced lignification of the interfascicular fibers. We also show that cell division in the fascicular cambial regions is altered, with the majority of vascular bundles containing cambial cells that are disorganized and possess enlarged nuclei. This is the first attempt at functional characterization of a release factor in vivo in plants and demonstrates the importance of eRF1-1 function in Arabidopsis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atmospheric carbon dioxide emissions cause a decrease in the pH and aragonite saturation state of surface ocean water. As a result, calcifying organisms are expected to suffer under future ocean conditions, but their physiological responses may depend on their nutrient status. Because many coral reefs experience high inorganic nutrient loads or seasonal changes in nutrient availability, reef organisms in localized areas will have to cope with elevated carbon dioxide and changes in inorganic nutrients. Halimeda opuntia is a dominant calcifying primary producer on coral reefs that contributes to coral reef accretion. Therefore, we investigated the carbon and nutrient balance of H. opuntia exposed to elevated carbon dioxide and inorganic nutrients. We measured tissue nitrogen, phosphorus and carbon content as well as the activity of enzymes involved in inorganic carbon uptake and nitrogen assimilation (external carbonic anhydrase and nitrate reductase, respectively). Inorganic carbon content was lower in algae exposed to high CO2, but calcification rates were not significantly affected by CO2 or inorganic nutrients. Organic carbon was positively correlated to external carbonic anhydrase activity, while inorganic carbon showed the opposite correlation. Carbon dioxide had a significant effect on tissue nitrogen and organic carbon content, while inorganic nutrients affected tissue phosphorus and N:P ratios. Nitrate reductase activity was highest in algae grown under elevated CO2 and inorganic nutrient conditions and lowest when phosphate was limiting. In general, we found that enzymatic responses were strongly influenced by nutrient availability, indicating its important role in dictating the local responses of the calcifying primary producer H. opuntia to ocean acidification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The knowledge of molybdenum application in legumes on the availability of N, by BNF, increased enzymatic activity and the residual effect caused on crops growth and yield can contribute to the greater scientific understanding involved in green manure processes. The aim of this study was to evaluate the Mo application and the N from Crotalaria juncea and Canavalia ensiformis green manures on common bean performance. Were conducted field experiments for the crops succession system (green manures - common bean) and laboratory essays for the enzymatic activities. Green manure production was installed in a factorial arrangement 2 x 4, with two green manure legumes species, sunnhemp (Crotalaria juncea) and jack beans (Canavalia ensiformis), and four Mo doses (0, 40, 80, 120 g ha-1) in the form of sodium molybdate (Na2MoO4), foliar applied, in a randomized block design with four replicates. For succession crop (common bean) additional treatment was added, beans grown without any fertilization, following the same experimental design from the previous crop. The dry matter decomposition and the N mineralization of green manure were monitored through collection of residues over time, by using the litter bags method. In laboratory were carried out tests of nitrate reductase activity in green manures and common beans at 90 and 66 days after sowing, respectively. The sunnhemp responded linearly positively to the application of Mo as the dry matter and N accumulation. While the jack beans presented a negative quadratic response for dry matter and there was no adjustment of regression models to N. The jack beans showed a higher decomposition rate and N mineralization compared to sunnhemp. The half lives for decomposing 50% of dry matter on the soil was 123 and 104 days to sunnhemp and jack beans, respectively, and 50% of N present in the residues was mineralized at 93 and 85 days. In common bean, differed from the control for number of pods the dose of 40 g ha-1 of Mo in both species of green manures and the dose 80 g ha-1 of Mo in jack beans. For number of grains only in sunnhemp on the dose of 40 g ha-1 of Mo differ from the control. The nitrate reductase activity was influenced by developmental stage of green manure species. In common bean, the activity of nitrate reductase was up to three times higher than the dose 0 g ha-1 of Mo compared to treatment with application of Mo in both species. There was no effect of Mo doses or species of green manure on common bean yield.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are reports that strobilurin besides having a fungicide effect can promote physiologic benefits to the plants. However, this effect on banana plants was not studied yet. The objective of the present study was to evaluate the effect of strobirulins on the physiology of banana plantlets. For this purpose, cultivar Grand Naine banana plantlets were transferred to pots containing substrate and kept in a nursery with 50% shading. The experimental design was a completely randomized design with three treatments (water, azoxystrobin and pyraclostrobin) and five replications. The treatments were applied at 15, 30, 45, 60 and 75 days after transplanting at a dose 100 g a. i. ha(-1) with manual spray. Plant height, pseudostem diameter, shoot dry matter in strobilurin treated plants were higher than the untreated plants, however, the effect of fungicide treatment was different, being the most pronounced effect of pyraclostrobin compared to azoxystrobin. Plants treated with pyraclostrobin had higher leaf area, nitrate reductase activity and chlorophyll content of leaf total nitrogen than the plants treated with azoxystrobin and water, which did not differ. Strobilurins affect the physiology of the banana plantlets differently, the effect being more pronounced by pyraclostrobin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to determine the effect of pearl millet intercropped with other cover crops on mineral forms of N and urease activity in soil, nitrate reductase activity in the leaves of the follow-up rice crop, as well as the yield components of this rice crop. The experiment was performed in the year 2012/2013 at two locations of the Brazilian Cerrado.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Migraine, with and without aura (MA and MO), is a prevalent and complex neurovascular disorder that is likely to be influenced by multiple genes some of which may be capable of causing vascular changes leading to disease onset. This study was conducted to determine whether the ACE I/D gene variant is involved in migraine risk and whether this variant might act in combination with the previously implicated MTHFR C677T genetic variant in 270 migraine cases and 270 matched controls. Statistical analysis of the ACE I/D variant indicated no significant difference in allele or genotype frequencies (P > 0.05). However, grouping of genotypes showed a modest, yet significant, over-representation of the DD/ID genotype in the migraine group (88%) compared to controls (81%) (OR of 1.64, 95% CI: 1.00–2.69, P = 0.048). Multivariate analysis, including genotype data for the MTHFR C677T, provided evidence that the MTHFR (TT) and ACE (ID/DD) genotypes act in combination to increase migraine susceptibility (OR = 2.18, 95% CI: 1.15–4.16, P = 0.018). This effect was greatest for the MA subtype where the genotype combination corresponded to an OR of 2.89 (95% CI:1.47–5.72, P = 0.002). In Caucasians, the ACE D allele confers a weak independent risk to migraine susceptibility and also appears to act in combination with the C677T variant in the MTHFR gene to confer a stronger influence on the disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sheep liver 5,10-methylenetetrahydrofolate reductase was subjected to specific chemical modification with phenylglyoxal, diethyl pyrocarbonate and N-bromosuccinimide. The second-order rate constants for inactivation were calculated to be 54 M-1 X min-1, 103 M-1 X min-1 and 154 M-1 X min-1 respectively. This inactivation could be prevented by incubation with substrates or products, suggesting that the residues modified, namely arginine, histidine and tryptophan, are essential for enzyme activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Triclosan, a well-known inhibitor of Enoyl Acyl Carrier Protein Reductase (ENR) from several pathogenic organisms, is a promising lead compound to design effective drugs. We have solved the X-ray crystal structures of Plasmodium falciparum ENR in complex with triclosan variants having different substituted and unsubstituted groups at different key functional locations. The structures revealed that 4 and 2' substituted compounds have more interactions with the protein, cofactor, and solvents when compared with triclosan. New water molecules were found to interact with some of these inhibitors. Substitution at the 2' position of triclosan caused the relocation of a conserved water molecule, leading to an additional hydrogen bond with the inhibitor. This observation can help in conserved water-based inhibitor design. 2' and 4' unsubstituted compounds showed a movement away from the hydrophobic pocket to compensate for the interactions made by the halogen groups of triclosan. This compound also makes additional interactions with the protein and cofactor which compensate for the lost interactions due to the unsubstitution at 2' and 4'. In cell culture, this inhibitor shows less potency, which indicates that the chlorines at 2' and 4' positions increase the ability of the inhibitor to cross multilayered membranes. This knowledge helps us to modify the different functional groups of triclosan to get more potent inhibitors. (C) 2010 IUBMB IUBMB Life, 62(6): 467-476.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An experimental charge density analysis of an anti-TB drug ethionamide was carried out from high resolution X-ray diffraction at 100 K to understand its charge density distribution and electrostatic properties. The experimental results were validated from periodic theoretical charge density calculations performed using CRYSTAL09 at the B3LYP/6-31G** level of theory. The electron density rho(bcp)(r) and the Laplacian of electron density del(2)(rho bcp)(r) of the molecule calculated from both the methods display the charge density distribution of the ethionamide molecule in the crystal field. The electrostatic potential map shows a large electropositive region around the pyridine ring and a large electronegative region at the vicinity of the thiol atom. The calculated experimental dipole moment is 10.6D, which is higher than the value calculated from theory (8.2D). The topological properties of C-H center dot center dot center dot S, N-H center dot center dot center dot N and N-H center dot center dot center dot S hydrogen bonds were calculated, revealing their strength. The charge density analysis of the ethionamide molecule determined from both the experiment and theory gives the topological and electrostatic properties of the molecule, which allows to precisely understand the nature of intra and intermolecular interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heme and chlorophyll accumulate to high levels in legume root nodules and in photosynthetic tissues, respectively, and they are both derived from the universal tetrapyrrole precursor δ-aminolevulinic acid (ALA). The first committed step in ALA and tetrapyrrole synthesis is catalyzed by glutamyl-tRNA reductase (GTR) in plants. A soybean (Glycine max) root-nodule cDNA encoding GTR was isolated by complementation of an Escherichia coli GTR-defective mutant for restoration of ALA prototrophy. Gtr mRNA was very low in uninfected roots but accumulated to high levels in root nodules. The induction of Gtr mRNA in developing nodules was subsequent to that of the gene Enod2 (early nodule) and coincided with leghemoglobin mRNA accumulation. Genomic analysis revealed two Gtr genes, Gtr1 and a 3′ portion of Gtr2, which were isolated from the soybean genome. RNase-protection analysis using probes specific to Gtr1 and Gtr2 showed that both genes were expressed, but Gtr1 mRNA accumulated to significantly higher levels. In addition, the qualitative patterns of expression of Gtr1 and Gtr2 were similar to each other and to total Gtr mRNA in leaves and nodules of mature plants and etiolated plantlets. The data indicate that Gtr1 is universal for tetrapyrrole synthesis and that a Gtr gene specific for a tissue or tetrapyrrole is unlikely. We suggest that ALA synthesis in specialized root nodules involves an altered spatial expression of genes that are otherwise induced strongly only in photosynthetic tissues of uninfected plants.