962 resultados para Net Heat flux


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents experimental results on heat transfer and pressure drop for a compact heat sink made of fully triangulated, lightweight (porosity∼0.938), aluminum lattice-frame materials (LFMs). Due to the inherent structural anisotropy of the LFMs, two mutually perpendicular orientations were selected for the measurements. Constant heat flux was applied to the heat sink under steady state conditions, and dissipated by forced air convection. The experimental data were compared with those predicted from an analytical model based on fin analogy. The experimental results revealed that pressure drop is strongly dependent upon the orientation of the structure, due mainly to the flow blockage effect. For heat transfer measurements, typical local temperature distributions on the substrate under constant heat flux conditions were captured with infrared camera. The thermal behavior of LFMs was found to follow closely that of cylinder banks, with early transition Reynolds number (based on strut diameter) equal to about 300. The Nusselt number prediction from the fin-analogy correlates well with experimental measurements, except at low Reynolds numbers where a slightly underestimation is observed. Comparisons with empty channels and commonly used heat exchanger media show that the present LFM heat sink can remove heat approximately seven times more efficient than an empty channel and as efficient as a bank of cylinders at the same porosity level. The aluminum LFMs are extremely stiff and strong, making them ideal candidates for multifunctional structures requiring both heat dissipation and mechanical load carrying capabilities. © 2003 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heat transfer from plasma to a nonspherical partical in the free-molecular regime is studied in the present paper under thin plasma sheath condition. Analytical expressions for the floating potential charge and heat fluxes of an ellipsoid particle of revolution are derived and curves are given for key parameters for arbitrary plasma flow direction. On the basis of these results, an equivalent sphere with the same surface area as the nonspherical particle is suggested to be used for calculating the total heat flux of nonspherical particle in engineering application with acceptable accuracy. Furthermore, the effects of particle rotation, which occurs in most aerosol systems, on the heat transfer are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The combination of remotely sensed gappy Sea surface temperature (SST) images with the missing data filling DINEOF (data interpolating empirical orthogonal functions) technique, followed by a principal component analysis of the reconstructed data, has been used to identify the time evolution and the daily scale variability of the wintertime surface signal of the Iberian Poleward Current (IPC), or Navidad, during the 1981-2010 period. An exhaustive comparison with the existing bibliography, and the vertical temperature and salinity profiles related to its extremes over the Bay of Biscay area, show that the obtained time series accurately reflect the IPC-Navidad variability. Once a time series for the evolution of the SST signal of the current over the last decades is well established, this time series is used to propose a physical mechanism in relation to the variability of the IPC-Navidad, involving both atmospheric and oceanic variables. According to the proposed mechanism, an atmospheric circulation anomaly observed in both the 500 hPa and the surface levels generates atmospheric surface level pressure, wind-stress and heat-flux anomalies. In turn, those surface level atmospheric anomalies induce mutually coherent SST and sea level anomalies over the North Atlantic area, and locally, in the Bay of Biscay area. These anomalies, both locally over the Bay of Biscay area and over the North Atlantic, are in agreement with several mechanisms that have separately been related to the variability of the IPC-Navidad, i.e. the south-westerly winds, the joint effect of baroclinicity and relief (JEBAR) effect, the topographic beta effect and a weakened North Atlantic gyre.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pool boiling of degassed FC-72 on a plane plate heater has been studied experimentally in microgravity. A quasi-steady heating method is adopted, in which the heating voltage is controlled to increase exponentially with time. Compared with terrestrial experiments, bubble behaviors are very different, and have direct effect on heat transfer. Small, primary bubbles attached on the surface seem to be able to suppress the activation of the cavities in the neighborhoods, resulting in a slow increase of the wall temperature with the heat flux. For the high subcooling, the coalesced bubble has a smooth surface and a small size. It is difficult to cover the whole heater surface, resulting in a special region of gradual transitional boiling in which nucleate boiling and local dry area can co-exist. No turning point corresponding to the transition from nucleate boiling to film boiling can be observed. On the contrary, the surface oscillation of the coalesced bubble at low subcooling may cause more activated nucleate sites, and then the surface temperature may keep constant or even fall down with the increasing heat flux. Furthermore, an abrupt transition to film boiling can also be observed. It is shown that heat transfer coefficient and CHF increase with the subcooling or pressure in microgravity, as observed in normal gravity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

For efficiently cooling electronic components with high heat flux, experiments were conducted to study the flow boiling heat transfer performance of FC-72 over square silicon chips with the dimensions of 10 × 10 × 0.5 mm3. Four kinds of micro-pin-fins with the dimensions of 30 × 60, 30 × 120, 50 × 60, 50 × 120 μm2 (thickness, t × height, h) were fabricated on the chip surfaces by the dry etching technique for enhancing boiling heat transfer. A smooth surface was also tested for comparison. The experiments were made at three different fluid velocities (0.5, 1 and 2 m/s) and three different liquid subcoolings (15, 25 and 35 K). The results were compared with the previous published data of pool boiling. All micro-pin-fined surfaces show a considerable heat transfer enhancement compared with a smooth surface. Flow boiling can remarkably decrease wall superheat compared with pool boiling. At the velocities lower than 1 m/s, the micro-pin-finned surfaces show a sharp increase in heat flux with increasing wall superheat. For all surfaces, the maximum allowable heat flux, qmax, for the normal operation of LSI chips increases with fluid velocity and subcooling. For all micro-pin-finned surfaces, the wall temperature at the critical heat flux (CHF) is less than the upper limit for the reliable operation of LSI chips, 85◦C. The largest value of qmax can reach nearly 148 W/cm2 for micro-pin-finned chips with the fin height of 120 μm at the fluid velocity of 2 m/s and the liquid subcooling of 35 K. The perspectives for the boiling heat transfer experiment of the prospective micro-pin-finned sur- faces, which has been planned to be made in the Drop Tower Beijing/NMLC in the future, are also presented.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Researches on two-phase flow and pool boiling heat transfer in microgravity, which included groundbased tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

通量测量点的能量收支总是表现出不平衡,即使在地势平坦、植被分布均一、稀疏植被下垫面的情况下也有约30%的能量失衡状况。能量平衡闭合 (EBC) 问题在验证涡度相关系统质量方面,得到了广泛的关注。实验在内蒙古草原3个地点,通过涡度相关系统附近移动能量平衡系统的测定手段,采用能量平衡余项法和最小二乘 (OLS) 线性回归法,研究了土壤热通量、净辐射及可供能量空间变异对能量平衡闭合的影响。 结果显示,EBC 在三个研究点的平均余项为8~19 W m-2,OLS 斜率为0.83~0.96。EBC 在土壤湿润情况的站点要高于干旱站点。 土壤热通量的空间变异三站点平均为白天48 W m-2 (占同时间 Rn 的13%),夜间15 W m-2 (34%),平均29 W m-2 (24%)。通过8个工作站的测量,这个变异会造成9% (从0.93到1.01) 的 OLS 斜率差别。夜间的能量平衡不闭合可以由土壤热通量的空间变异解释。如果在本研究的的三个草原站点上忽略了土壤热通量,则会造成较大的余项 (峰值时110 W m-2) 产生,从而使 OLS 斜率增大23%。特别是通量板埋置在地面以下30 mm处时,上层的土壤热储部分占到全部土壤热通量的50%,这不仅影响到 EBC 的大小,更起到调节土壤热通量与“真实的波形” 相一致的作用。如果该部分热储被忽略掉,EBC 余项会增加60 W m-2,OLS 斜率也会变化 (减少) 9%。用大尺度多点测量与涡度塔附近的小尺度测定相比较,后者表现出稍高的闭合率,即 OLS 斜率增加4%。 相对于土壤热通量,净辐射的空间变异较小,三站点平均为白天17 W m-2 (5%),夜间7 W m-2 (13%),平均 12 W m-2 (5%)。可以引起3% (从0.88到0.91) 的 OLS 斜率差异。研究结果还表明,风速校正应该在 Q7.1 净辐射仪中应用,校正后的结果与 CNR1 的结果在白天有吻合较好,但在其它时段仍有较大差异,特别是在夜间,风速校正基本不起作用,使得两种仪器间差异达20 W m-2。比较表明,风速校正可以提高白天 Rn 的6%,仅降低夜间0.3%。因此,无论是用余项法还是用 OLS 线性回归法,在比较使用不同仪器的站点间的闭合状况时 (本研究的结果适用于草地 Q7.1 与 CNR1 间的比较),可以用9:00-15:00 h 时段的数据进行比较,这样可以避免因使用不同仪器的差异所造成的影响。用该时段的数据进行比较,仪器间的差异余项法小于6 W m-2,OLS 法小于3%。 受可供能量空间变异影响,三个站点平均 EBC 的不确定性为白天66 W m-2 (19%),夜间23 W m-2 (50%),平均42 W m-2 (36%);或者改变 OLS 斜率11%。用最大值和最小值来衡量,EBC 最大不确定性,正午时在站点 I、II 和 III 中分别为81,114和91 W m-2。故在探讨能量平衡和能量平衡闭合问题时,必须充分考虑到这种不确定性,否则会产生偏差,或者得出错误结论。 研究还表明,即使考虑到白天所有可供能量的最大不确定性,仍然不能使能量平衡闭合。中午 (12:00 h),站点 I,II 和 III 仍然有14±15,48±12和47±14 W m-2 的失衡不能够归因于可供能量的空间不确定性。因此,其它影响因素也需进行细致的探讨。 在两站点不同测量深度土壤热通量结果的差异性比较实验中,无论在站点 I 还是 III,均表现出一致的结论,即随通量板布置深度加深,其测量结果会越高,与浅层布置的相比,差别可高达150 W m-2。深层土壤热通量的计算仍是个难题,需进一步研究。 在不同植被结构对净辐射测定影响的实验中发现,随刈割强度增加,一天中大部分时间净辐射均减少。正午依次为413,395和388 W m-2。无论正午还是全天合计,重度刈割地点的净辐射均比不刈割对照处理少6%,而且,在整个生长季也少6%,约合40,000 W m-2。测量高度不同,不同处理间对测定结果影响不同:刈割处理中,由于下垫面较均一,结果相差不显著;而对照则表现出较高的差异,用两配对样本T检验表明差异达到极显著 (P<0.000,9:30-15:00 h data)。当使用不同新旧程度的 domes 时,对净辐射结果会产生明显的影响。新 domes 的测量结果白天明显高,晚上明显低,使用了11个月的旧 domes,峰值时,白天低估25 W m-2,晚上高估10 W m-2。说明该差异在进行能量平衡闭合计算时,不能忽略。而全用新的和全用旧的进行比较,晚上仅有2-3 W m-2差异。 考虑生态系统中非生物因子对干扰条件下生物多样性动态和功能的影响,有助于更精确地阐明生物多样性-稳定性功能的关系。为此,设计了一个单因子刈割实验——内蒙古地区一种广泛存在的土地利用方式。主要目的是研究不同强度刈割影响下,微气候变量特别是能量平衡各分量和群落结构的变化及二者的关系。连续4年刈割,占第一位的优势种明显由低矮半灌木冷蒿 (Artemisia frigida) 取代了高大丛生禾草克氏针茅 (Stipa kylovii)。重度刈割下,针茅的盖度、生物量和丛重,群落叶面积、绿色生物量、凋落物量和群落高度一致低于轻度刈割/不刈割处理。微气候由于群落特征的这些变化也呈规律性变化。与对照相比,重度刈割降低了生长季土壤含水量的47.5%,但中午和日均土壤表面温度分别增加了7.4和1.2 °C,并且增加地表下2 cm土壤温度日较差 (日最高与最低温度之差) 4.2 °C。刈割处理由于凋落物少、反射强而表现出较低的净辐射,但土壤热通量显著提高,表现为土层加热和冷却快。因此,重度刈割处理较对照降低了可供能量8%,约合52,000 W m-2 。不同刈割强度间来看,NPP 或 LAI 与土壤热通量和净辐射的比值 (G/Rn) 以及波文比 (H/LE) 间呈负相关。重度刈割处理感热通量显著提高,但潜热通量在处理间差异不显著,表明未刈割处理虽然冠层伸展大,但是并没有导致更大的水分亏缺。未刈割处理增加了抵抗物种改变的能力,而刈割处理在连续一年一割的第四年显著增加了物种数,可能与因刈割影响而导致的群落结构与微气候的改变有关。本研究表明,未刈割处理可以减轻高温干旱季节的高温和干旱胁迫,表现出对环境变化的高抵抗性。未刈割处理的凋落物层和较高的垂直结构所形成的遮荫,可以形成一个阻挡蒸发的篱笆,这是维持其水分的保证。因此,为了恢复退化草原生态系统功能,需要修复能导致微气候变化的植物群落结构,否则难以成功。 本研究立足于原创性的实验研究,在中国特有的自然草原生态系统上开展,结合不同温度梯度的三地区涡度相关系统进行了能量平衡闭合的移动比较实验,以及结合常用土地利用方式的定点能量平衡实验。在翔实的数据基础上,为涡度相关方法的陆地表面能量平衡失衡问题提供了解释。增加了对两个主要能量流——土壤热通量和净辐射空间变异规律的认识,研究对于能量平衡和湍流通量相关研究是有价值的。在三个代表性地区首次利用多个净辐射仪和土壤热通量板的结果与三个标准的涡度相关系统进行了比较,这类量化失衡原因的相关研究应受到高度重视并进一步拓展,以提高对能量失衡的认识,进而推进水热和碳循环研究向更深层次发展。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

陆地生态系统与大气之间的水热碳交换是物质、能量循环的关键过程,一直以来都为研究者们所关注。进入20 世纪以来,特别是随着人们对全球气候变暖的逐步认识,气候变化对水热碳交换过程的影响及其对气候变化的响应研究更加备受关注。本研究以2004~2006 年近三年的涡度相关系统连续观测数据为依托,分析了雨养玉米农田水热碳通量的动态及其影响因子。研究表明,玉米农田水热通量(WHF) 呈显著的单峰型日变化, 日最大值出现在正午12:00~13:00,WHF 变化同步。潜热通量(LE)的季节变化规律与日变化相似,冬季小夏季大,年最大值与最小值分别出现在7 月和1 月。显热通量(Hs) 季节变化也呈单峰型,但年最大值出现在5 月,这主要与降水以及作物生长有关。半小时尺度上,WHF 主要受辐射控制,而日峰值受辐射峰值以及植被生长的双重影响;日尺度上,只要有降水过程,Hs 就会随土壤水分的增大而减小,降水停止后逐渐恢复。而降水对LE 的影响受到可用能量(AE)的干扰,表现出复杂的变化趋势。总的来说,降水持续时间越长AE 越少,对LE 的抑制越大;季节尺度上,WHF 受热量与水分的双重制约。Hs 随着天气回暖后第一次较大降水过程的出现呈现明显下降,而LE 则呈现相反的变化趋势。随着雨季到来和作物的生长,Hs 在7 月出现低谷,而LE 呈现相反的趋势随着降水量的增加而增大;年际间WHF 的分布规律大体一致,但因气象条件等的差异,特别是降水的差异造成年际间WHF 略有不同。在不同水文年型下,水分因子的影响作用有显著差异,且WHF 对热量与水分条件变化的敏感程度也不相同。欠水年,水分因子的作用更显著,是制约WHF 变化的主要控制因子,WHF 对水分的变化更敏感;而丰水年,水分因子的影响减弱,热量的盈亏决定着WHF 变化的主要方向。在不同水文年型下,水热碳通量对水热条件的变化表现出不同的响应方式,为研究生态系统对气候变化的响应提供了参考。 净碳(C)吸收期,玉米农田净碳交换(NEE)呈显著的日变化,在日出以后由CO2 释放转变为CO2 吸收,12:30 左右达到一天中的吸收峰值,日落前出现相反的转换。而净C 释放期内,NEE 均为正值且无明显日变化。NEE 季节变化也呈单峰型二次曲线,在7 月下旬或8 月上旬达到年最大吸收率。根据NEE 的正负,一年分为三个阶段:两个C 排放期与一个C 吸收期。一般C 吸收期从6月开始到9 月结束,此前此后均为C 排放期。在半小时、日时间尺度上,光通量密度(PPFD)与NEE 有着相似的变化规律,是控制NEE 的主要因子;在日、季节尺度上,叶面积指数(LAI)和气孔导度(gs)是影响NEE 的主要生物因子,且gs 的影响程度随着发育期的变化而变化,而不同年份间LAI 对NEE 的影响没有显著的差异。几乎在所有时间步长上,土壤温度(Ts)均为生态系统呼吸(Re)的主要控制因子,时间尺度愈短,二者的相关性愈好。总的来说,在较短时间尺度上,高PPFD 与夏季低温将会促进C 的吸收,有利于C 累积。 玉米农田日最大净C 吸收速率(NEEmax, daily)以及吸收释放转换点(NEE=0)均受PPFD 控制。NEEmax, daily 出现时间与PPFDmax, daily 出现时间几乎完全一致,当PPFD 达到1 日内极大值时,净C 吸收也相应达到了日最大值。但NEEmax, daily的量值还受到其它因子的影响。当水分条件充足时,还将受到LAI、gs 等生物因子的控制。NEE 由正转为负的转换点也是由PPFD 决定。当PPFD 稳定大于PPFD*( PPFD*=100 μmol•m-2s -1)时,净C 吸收开始;当PPFD 稳定小于PPFD*时,净C 吸收由此结束。1 日内,PPFD 稳定通过PPFD*之间的时间间隔决定了日净C 吸收的时间长度。日净C 吸收的时间越长,吸收量也越大,且有明显的季节变化,7 月最长9 月最短。 按照热量水分状况将三年分组,分为I 组(水分状况相似,热量条件不同)与II 组(热量条件相似,水分状况不同)。 I 组年际间PPFD 波动是造成C 交换格局变化的关键原因。而II 组年际间C 交换格局不同是由降水量及其不同分布引起的土壤含水量(SWC)变化是造成。SWC 可以解释年际间NEE 变异的97%,而大气水汽压亏缺(VPD)可以解释30.7%;温度因子通过影响C 收支中的呼吸项,间接影响着生态系统的NEE,它可以解释年际间NEE 变异的73.9%,也是造成年际间C 交换格局不同的原因之一;另外,PPFD 和发育期早晚以及净C吸收期长度等也同样影响着C 交换格局的变化。综合两组情况来看,由水分条件年际变化引起的NEE 的波动大于能量年际变化引起的波动。总之,在较长时间尺度上,NEE 对SWC 变化比其对PPFD 变化更敏感,说明在半干旱地区土壤水分条件仍然是决定C 交换格局的主导因子。 NEE 与LE 呈线性相关,它们之间的相关性主要受温度和NEE 的控制,温度越高,二者的相关性越弱,而NEE 越大二者相关性越好。同时,作物蒸腾与土壤蒸发的比例也是影响NEE 与LE 之间关系的主要因素。蒸腾作用所占的比例越大,二者的线性关系越显著,而土壤蒸发比例越大,二者的相关性越弱。总的来说,NEE 与LE 之间的线性关系有明显的季节变化,生长季好于非生长季,夏天好于冬天。 总之,雨养玉米农田水热碳通量既具有其它农田生态系统共有的动态特征,也具有其特有特征。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Building integrated photovoltaics (BIPV) has potential of becoming the mainstream of renewable energy in the urban environment. BIPV has significant influence on the thermal performance of building envelope and changes radiation energy balance by adding or replacing conventional building elements in urban areas. PTEBU model was developed to evaluate the effect of photovoltaic (PV) system on the microclimate of urban canopy layer. PTEBU model consists of four sub-models: PV thermal model, PV electrical performance model, building energy consumption model, and urban canyon energy budget model. PTEBU model is forced with temperature, wind speed, and solar radiation above the roof level and incorporates detailed data of PV system and urban canyon in Tianjin, China. The simulation results show that PV roof and PV façade with ventilated air gap significantly change the building surface temperature and sensible heat flux density, but the air temperature of urban canyon with PV module varies little compared with the urban canyon of no PV. The PV module also changes the magnitude and pattern of diurnal variation of the storage heat flux and the net radiation for the urban canyon with PV increase slightly. The increase in the PV conversion efficiency not only improves the PV power output, but also reduces the urban canyon air temperature. © 2006.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of this report is to compare the trapped field distribution under a local heating created at the sample edge for different sample morphologies. Hall probe mappings of the magnetic induction trapped in YBCO bulk samples maintained out of thermal equilibrium were performed on YBCO bulk single domains, YBCO single domains with regularly spaced hole arrays, and YBCO superconducting foams. The capability of heat draining was quantified by two criteria: the average induction decay and the size of the thermally affected zone caused by a local heating of the sample. Among the three investigated sample shapes, the drilled single domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. Finally, a simple numerical modelling of the heat flux spreading into a drilled sample is used to suggest some design rules about the hole configuration and their size. © 2005 IOP Publishing Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tetra-n-butyl-ammonium bromide (TBAB) clathrate hydrate slurry (CHS) is one kind of secondary refrigerants, which is promising to be applied into air-conditioning or latent-heat transportation systems as a thermal storage or cold carrying medium for energy saving. It is a solid-liquid two phase mixture which is easy to produce and has high latent heat and good fluidity. In this paper, the heat transfer characteristics of TBAB slurry were investigated in a horizontal stainless steel tube under different solid mass fractions and flow velocities with constant heat flux. One velocity region of weakened heat transfer was found. Moreover, TBAB CHS was treated as a kind of Bingham fluids, and the influences of the solid particles, flow velocity and types of flow on the forced convective heat transfer coefficients of TBAB CHS were investigated. At last, criterial correlations of Nusselt number for laminar and turbulent flows in the form of power function were summarized, and the error with experimental results was within 20%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Seed bubbles are generated on microheaters located at the microchannel upstream and driven by a pulse voltage signal, to improve flow and heat transfer performance in microchannels. The present study investigates how seed bubbles stabilize flow and heat transfer in micro-boiling systems. For the forced convection flow, when heat flux at the wall surface is continuously increased, flow instability is self-sustained in microchannels with large oscillation amplitudes and long periods. Introduction of seed bubbles in time sequence improves flow and heat transfer performance significantly. Low frequency (similar to 10 Hz) seed bubbles not only decrease oscillation amplitudes of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures, but also shorten oscillation cycle periods. High frequency (similar to 100 Hz or high) seed bubbles completely suppress the flow instability and the heat transfer system displays stable parameters of pressure drops, fluid inlet and outlet temperatures and heating surface temperatures. Flow visualizations show that a quasi-stable boundary interface from spheric bubble to elongated bubble is maintained in a very narrow distance range at any time. The seed bubble technique almost does not increase the pressure drop across microsystems, which is thoroughly different from those reported in the literature. The higher the seed bubble frequency, the more decreased heating surface temperatures are. A saturation seed bubble frequency of 1000-2000 Hz can be reached, at which heat transfer enhancement attains the maximum degree, inferring a complete thermal equilibrium of vapor and liquid phases in microchannels. Benefits of the seed bubble technique are the stabilization of flow and heat transfer, decreasing heating surface temperatures and improving temperature uniformity of the heating surface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The not only lower but also uniform MEMS chip temperatures can he reached by selecting suitable boiling number range that ensures the nucleate boiling heat transfer. In this article, boiling heat transfer experiments in 10 silicon triangular microchannels with the hydraulic diameter of 55.4 mu m were performed using acetone as the working fluid, having the inlet liquid temperatures of 24-40 degrees C, mass fluxes of 96-360 kg/m(2)s, heat fluxes of 140-420 kW/m(2), and exit vapor mass qualities of 0.28-0.70. The above data range correspond to the boiling number from 1.574 x 10(-3) to 3.219 x 10(-3) and ensure the perfect nucleate boiling heat transfer region, providing a very uniform chip temperature distribution in both streamline and transverse directions. The boiling heat transfer coefficients determined by the infrared radiator image system were found to he dependent on the heat Axes only, not dependent on the mass Axes and the vapor mass qualities covering the above data range. The high-speed flow visualization shows that the periodic flow patterns take place inside the microchannel in the time scale of milliseconds, consisting of liquid refilling stage, bubble nucleation, growth and coalescence stage, and transient liquid film evaporation stage in a full cycle. The paired or triplet bubble nucleation sites can occur in the microchannel corners anywhere along the flow direction, accounting for the nucleate boiling heat transfer mode. The periodic boiling process is similar to a series of bubble nucleation, growth, and departure followed by the liquid refilling in a single cavity for the pool boiling situation. The chip temperature difference across the whole two-phase area is found to he small in a couple of degrees, providing a better thermal management scheme for the high heat flux electronic components. Chen's [11 widely accepted correlation for macrochannels and Bao et al.'s [21 correlation obtained in a copper capillary tube with the inside diameter of 1.95 mm using R11 and HCFC123 as working fluids can predict the present experimental data with accepted accuracy. Other correlations fail to predict the correct heat transfer coefficient trends. New heat transfer correlations are also recommended.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We provide three-dimensional numerical simulations of conjugate heat transfer in conventional and the newly proposed interrupted microchannel heat sinks. The new microchannel heat sink consists of a set of separated zones adjoining shortened parallel microchannels and transverse microchambers. Multi-channel effect, physical property variations, and axial thermal conduction are considered. It is found that flow rate variations in different channels can be neglected, while heat received by different channels accounts for 2% deviations from the averaged value when the heat flux at the back surface of the silicon chip reaches 100 W/cm(2). The computed hydraulic and thermal boundary layers are redeveloping in each separated zone due to shortened flow length for the interrupted microchannel heat sink. The periodic thermal developing flow is responsible for the significant heat transfer enhancement. Two effects influence pressure drops across the newly proposed microchannel heat sink. The first one is the pressure recovery effect in the microchamber, while the second one is the head loss when liquid leaves the microchamber and enters the next zone. The first effect compensates or suppresses the second one, leading to similar or decreased pressure drop than that for the conventional microchannel heat sink, with the fluid Prandtl number larger than unity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Boiling is an extremely complicated and illusive process. Microgravity experiments offer a unique opportunity to study the complex interactions without external forces, such as buoyancy, which can affect the bubble dynamics and the related heat transfer. Furthermore, they can also provide a means to study the actual influence of gravity on the boiling. Two research projects on pool boiling in microgravity have been conducted aboard the Chinese recoverable satellites. Ground-based experiments both in normal gravity and in short-term microgravity in the Drop Tower Beijing and numerical simulations have also been performed. Steady boiling of R113 on thin platinum wires was studied with a temperature-controlled heating method, while quasi-steady boiling of FC-72 on a plane plate was investigated with an exponentially increasing heating voltage. It was found that the bubble dynamics in microgravity has a distinct difference from that in normal gravity, and that the heat transfer characteristic is depended upon the bubble dynamics. Lateral motions of bubbles on the heaters were observed before their departure in microgravity. The surface oscillation of the merged bubbles due to lateral coalescence between adjacent bubbles drove it to detach from the heaters. Slight enhancement of heat transfer on wires is observed in microgravity, while diminution is evident for high heat flux in the plate case.