293 resultados para Neovascularization
Resumo:
OBJECTIVE: To identify disease causing mutation in three generations of a Swiss family with pattern dystrophy and high intrafamilial variability of phenotype. To assess the effect of intravitreal ranibizumab injections in the treatment of subfoveal choroidal neovascularization associated with pattern dystrophy in one patient. METHODS: Affected family members were ascertained for phenotypic and genotypic characterization. Ophthalmic evaluations included fundus photography, autofluorescence imaging, optical coherence tomography, and International Society for Clinical Electrophysiology of Vision standard full-field electroretinography. When possible family members had genetic testing. The proband presented with choroidal neovascularization and had intravitreal injections as needed according to visual acuity and optical coherence tomography. RESULTS: Proband had a multifocal type pattern dystrophy, and his choroidal neovascularization regressed after four intravitreal injections. The vision improved from 0.8 to 1.0, and optical coherence tomography showed complete anatomical restoration. A butterfly-shaped pattern was observed in her cousin, whereas a fundus pulverulentus pattern was seen in a second cousin. Aunt had a multifocal atrophic appearance, simulating geographic atrophy in age-related macular degeneration. The Y141C mutation was identified in the peripherin/RDS gene and segregated with disease in the family. CONCLUSION: This is the first report of marked intrafamilial variation of pattern dystrophy because of peripherin/RDS Y141C mutation. Intravitreal ranibizumab injections might be a valuable treatment for associated subfoveal choroidal neovascularization.
Resumo:
S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF), via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.
Resumo:
Since 2004, four antiangiogenic drugs have been approved for clinical use in patients with advanced solid cancers, on the basis of their capacity to improve survival in phase III clinical studies. These achievements validated the concept introduced by Judah Folkman that the inhibition of tumor angiogenesis could control tumor growth. It has been suggested that biomarkers of angiogenesis would greatly facilitate the clinical development of antiangiogenic therapies. For these four drugs, the pharmacodynamic effects observed in early clinical studies were important to corroborate activities, but were not essential for the continuation of clinical development and approval. Furthermore, no validated biomarkers of angiogenesis or antiangiogenesis are available for routine clinical use. Thus, the quest for biomarkers of angiogenesis and their successful use in the development of antiangiogenic therapies are challenges in clinical oncology and translational cancer research. We review critical points resulting from the successful clinical trials, review current biomarkers, and discuss their potential impact on improving the clinical use of available antiangiogenic drugs and the development of new ones.
Resumo:
Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies.
Resumo:
If regions of the anterior pituitary gland received systemic blood via a direct arterial blood supply these regions would escape hypothalamic regulation and thus be a sequela in endocrine disorders. Since, in the untreated rat, all of the blood supply to the anterior pituitary gland is via the hypophyseal portal vessels, we hypothesized that partial interruption of the portal vessels could provoke the establishment of a direct arterial blood supply (arteriogenesis). We utilized the injection of polystyrene microspheres (15 or 9 micron diameter) into the left ventricle of the heart to test this hypothesis. Microspheres are trapped in the first capillary plexus they reach since they are too large to traverse the capillaries. No microspheres reached the anterior pituitary gland of control rats, a finding consistent with the fact that the anterior pituitary gland receives all of its blood supply via the hypophyseal portal blood vessels. Microspheres were observed in the primary portal capillary plexus in the infundibulum (median eminence), infundibular stalk (pituitary stalk), and infundibular process (pars nervosa), the first capillary plexus which they reached. A lesion of the medial basal hypothalamus (MBH) which destroyed the long portal vessels did not result in arteriogenesis since few, if any, microspheres were observed in the anterior pituitary gland. We confirmed, using vascular casts, that these lesions resulted in the long-term destruction of the primary portal capillaries in the infundibulum and of the long portal vessels. In MBH-lesioned animals it appears that all of the blood supply of the anterior pituitary gland is via short portal vessels arising from the infundibular stem and process.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The approval in 2004 of bevacizumab (Avastin), a neutralizing monoclonal antibody directed against vascular endothelial growth factor (VEGF) as the first anti-angiogenic systemic drug to treat cancer patients validated the notion introduced 33 years earlier by Dr. Judah Folkman, that inhibition of tumor angiogenesis might be a valid approach to control tumor growth. Anti-angiogenic therapy was greeted in the clinic a major step forward in cancer treatment. At the same time this success recently boosted the field to the quest for new anti-angiogenic targets and drugs. In spite of this success, however, some old questions in the field have remained unanswered and new ones have emerged. They include the identification for surrogate markers of angiogenesis and anti-angiogenesis, the understanding about how anti-angiogenic therapy and chemotherapy synergize, the characterization of the biological consequences of sustained suppression of angiogenesis on tumor biology and normal tissue homeostasis, and the mechanisms of tumor escape from anti-angiogenesis. In this review we summarize some of these outstanding questions, and highlight future challenges in clinical, translational and experimental research in anti-angiogenic therapy that need to be addressed in order to improve current treatments and to design new drugs.
Resumo:
Photoreceptors and retinal pigment epithelial cells (RPE) targeting remains challenging in ocular gene therapy. Viral gene transfer, the only method having reached clinical evaluation, still raises safety concerns when administered via subretinal injections. We have developed a novel transfection method in the adult rat, called suprachoroidal electrotransfer (ET), combining the administration of nonviral plasmid DNA into the suprachoroidal space with the application of an electrical field. Optimization of injection, electrical parameters and external electrodes geometry using a reporter plasmid, resulted in a large area of transfected tissues. Not only choroidal cells but also RPE, and potentially photoreceptors, were efficiently transduced for at least a month when using a cytomegalovirus (CMV) promoter. No ocular complications were recorded by angiographic, electroretinographic, and histological analyses, demonstrating that under selected conditions the procedure is devoid of side effects on the retina or the vasculature integrity. Moreover, a significant inhibition of laser induced-choroidal neovascularization (CNV) was achieved 15 days after transfection of a soluble vascular endothelial growth factor receptor-1 (sFlt-1)-encoding plasmid. This is the first nonviral gene transfer technique that is efficient for RPE targeting without inducing retinal detachment. This novel minimally invasive nonviral gene therapy method may open new prospects for human retinal therapies.
Resumo:
Inhibition of tumor angiogenesis suppresses tumor growth and metastatic spreading in many experimental models, suggesting that anti-angiogenic drugs may be used to treat human cancer. During the past decade more than eighty molecules that showed anti-angiogenic activity in preclinical studies were tested in clinical cancer trials, but most of them failed to demonstrate any measurable anti-tumor activity and none have been approved for clinical use. Recent results stemming from trials with anti-VEGF antibodies, used alone or in combination with chemotherapy, suggest that systemic anti-angiogenic therapy may indeed have a measurable impact on cancer progression and patient survival. From the clinical studies it became nevertheless clear that the classical endpoints used in anti-cancer trials do not bring sufficient discriminative power to monitor the effects of anti-angiogenic drugs. It is therefore necessary to identify and validate molecular, cellular and functional surrogate markers of angiogenesis to monitor activity and efficacy of anti-angiogenic drugs in patients. Availability of such markers will be instrumental to re-evaluate the role of tumor angiogenesis in human cancer, to identify new molecular targets and drugs, and to improve planning, monitoring and interpretation of future studies. Future anti-angiogenesis trials integrating biological endpoints and surrogate markers or angiogenesis will require close collaboration between clinical investigators and laboratory-based researchers.
Resumo:
Chronic intake of non steroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced risk of developing gastrointestinal tumors, in particular colon cancer. Increasing evidence indicates that NSAID exert tumor-suppressive activity on pre-malignant lesions (polyps) in humans and on established experimental tumors in mice. Some of the tumor-suppressive effects of NSAIDs depend on the inhibition of cyclooxygenase-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxane, which is highly expressed in inflammation and cancer. Recent findings indicate that NSAIDs exert their anti-tumor effects by suppressing tumor angiogenesis. The availability of COX-2-specific NSAIDs opens the possibility of using this drug class as anti-angiogenic agents in combination with chemotheapy or radiotherapy for the treatment of human cancer. Here we will briefly review recent advances in the understanding of the mechanism by which NSAIDs suppress tumor angiogenesis and discuss their potential clinical application as anti-cancer agents.
Resumo:
Bone marrow-derived endothelial progenitor cells (EPCs) infiltrate into sites of neovascularization in adult tissues and mature into functional blood endothelial cells (BECs) during a process called vasculogenesis. Human marrow-derived EPCs have recently been reported to display a mixed myeloid and lymphatic endothelial cell (LEC) phenotype during inflammation-induced angiogenesis; however, their role in cancer remains poorly understood. We report the in vitro differentiation of human cord blood CD133(+)CD34(+) progenitors into podoplanin(+) cells expressing both myeloid markers (CD11b, CD14) and the canonical LEC markers vascular endothelium growth factor receptor 3 (VEGFR-3), lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1), and prospero homeobox 1 (PROX-1). These podoplanin(+) cells displayed sprouting behavior comparable to that of LECs in vitro and a dual hemangiogenic and lymphangiogenic activity in vivo in an endothelial cell sprouting assay and corneal vascularization assay, respectively. Furthermore, these cells expressed vascular endothelium growth factor (VEGF) family members A, -C, and -D. Thus, bone-marrow derived EPCs stimulate hemangiogenesis and lymphangiogenesis through their ability to differentiate into LECs and to produce angiogenic factors. Importantly, plasma from patients with breast cancer induced differentiation of CD34(+) cord blood progenitors into hemangiogenic and lymphangiogenic CD11b(+) myeloid cells, whereas plasma from healthy women did not have this effect. Consistent with these findings, circulating CD11b(+) cells from breast cancer patients, but not from healthy women, displayed a similar dual angiogenic activity. Taken together, our results show that marrow-derived EPCs become hemangiogenic and lymphangiogenic upon exposure to cancer plasma. These newly identified functions of bone-marrow derived EPCs are expected to influence the diagnosis and treatment of breast cancer.
Resumo:
We wished to evaluate the potential of iontophoresis to promote the delivery of antisense oligonucleotides (ODN) directed at the vascular endothelial growth factor (VEGF)-R2 receptor (KDR/Flk) to the cornea of the rat eye. Fluorescence (CY5)-labeled ODNs in phosphate-buffered saline (PBS) (20 microM) were locally administered to rat eyes, and their fate within the anterior segment was studied. Thirty-four male, 5-week-old Wistar rats were used for all experiments. The rats were divided in four groups. In group I (12 rats, 12 eyes), the ODNs (20 microM) were delivered by iontophoresis (300 microA for 5 minutes) using a specially designed corneal applicator. In group II (12 rats, 12 eyes), the ODNs (20 microM) were delivered using the same applicator, but no electrical current was applied. In group III (6 rats, 6 eyes), a corneal neovascular reaction was induced prior to the application of ODNs (20 microM), and iontophoresis electrical current was delivered as for group I rats. Group IV (4 rats, 4 eyes) received ODN (60 microM) iontophoresis application (300 microA for 5 minutes) and were used for ODN integrity studies. The animals were killed 5 minutes, 90 minutes, and 24 hours after a single ODN application and studied. Topically applied ODNs using the same iontophoresis applicator but without current do not penetrate the cornea and remain confined to the superficial epithelial layer. ODNs delivered with transcorneoscleral iontophoresis penetrate into all corneal layers and are also detected in the iris. In corneas with neovascularization, ODNs were particularly localized within the vascular endothelial cells of the stroma. ODNs extracted from eye tissues 24 hours after iontophoresis remained unaltered. The iontophoresis current did not cause any detectable ocular damage under these conditions. Iontophoresis promotes the delivery of ODNs to the anterior segment of the eye, including all corneal layers. Iontophoresis of ODNs directed at VEGF-R2 may be used for the design of specific antiangiogenic strategy in diseases of the cornea.
Resumo:
Leukocytes are cells of defense. Their main function is to protect our body against invading microorganisms. Some leukocytes, in particular, polymorphonuclear and monocytes, accumulate at sites of infection and neutralize pathogens through innate mechanisms. The blood and lymphatic vascular system are essential partners in this defensive reaction: Activated endothelial cells promote leukocyte recruitment at inflammatory sites; new blood vessel formation, a process called angiogenesis, sustains chronic inflammation, and lymphatic vessels transport antigens and antigen-presenting cells to lymph nodes, where they stimulate naive T and B lymphocytes to elicit an antigen-specific immune response. In contrast, leukocytes and lymphocytes are far less efficient in protecting us from cancer, the "enemy from within." Worse, cancer can exploit inflammation to its advantage. The role of angiogenesis, leukocytes, and inflammation in tumor progression was discussed at the second Monte Verità Conference, Tumor Host Interaction and Angiogenesis: Basic Mechanisms and Therapeutic Perspectives, held in Ascona, Switzerland, October 1-5, 2005. (Conference chairs were K. Alitalo, M. Aguet, C. Rüegg, and I. Stamenkovic.) Eight articles reporting about topics presented at the conference are featured in this issue of the Journal of Leukocyte Biology.
Resumo:
PURPOSE: Drug delivery to treat diseases of the posterior segment of the eye, such as choroidal neovascularization and its complications, is hampered by poor intraocular penetration and rapid elimination of the drug from the eye. The purpose of this study was to investigate the feasibility and tolerance of suprachoroidal injections of poly(ortho ester) (POE), a bioerodible and biocompatible polymer, as a biomaterial potentially useful for development of sustained drug delivery systems. METHODS: After tunnelization of the sclera, different formulations based on POE were injected (100 microL) into the suprachoroidal space of pigmented rabbits and compared with 1% sodium hyaluronate. Follow-up consisted of fundus observations, echography, fluorescein angiography, and histologic analysis over 3 weeks. RESULTS: After injection, POE spread in the suprachoroidal space at the posterior pole. It was well tolerated and progressively disappeared from the site of injection without sequelae. No bleeding or retinal detachment occurred. Echographic pictures showed that the material was present in the suprachoroidal space for 3 weeks. Angiography revealed minor pigment irregularities at the site of injection, but no retinal edema or necrosis. Histology showed that POE was well tolerated in the choroid. CONCLUSIONS: POE suprachoroidal injections, an easy, controllable, and reproducible procedure, were well tolerated in the rabbit eye. POE appears to be a promising biomaterial to deliver drugs focally to the choroid and the retina.
Resumo:
Cancer-related inflammation has emerged in recent years as a major event contributing to tumor angiogenesis, tumor progression and metastasis formation. Bone marrow-derived and inflammatory cells promote tumor angiogenesis by providing endothelial progenitor cells that differentiate into mature endothelial cells, and by secreting pro-angiogenic factors and remodeling the extracellular matrix to stimulate angiogenesis though paracrine mechanisms. Several bone marrow-derived myelonomocytic cells, including monocytes and macrophages, have been identified and characterized by several laboratories in recent years. While the central role of these cells in promoting tumor angiogenesis, tumor progression and metastasis is nowadays well established, many questions remain open and new ones are emerging. These include the relationship between their phenotype and function, the mechanisms of pro-angiogenic programming, their contribution to resistance to anti-angiogenic treatments and to metastasis and their potential clinical use as biomarkers of angiogenesis and anti-angiogenic therapies. Here, we will review phenotypical and functional aspects of bone marrow-derived myelonomocytic cells and discuss some of the current outstanding questions.