989 resultados para Nature inspired algorithms
Resumo:
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.
Resumo:
In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood and adult-onset schizophrenia, bipolar disorder, attention-deficit/ hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages. (C) 2004 Published by Elsevier Inc.
Resumo:
In studies of mirror-self-recognition subjects are usually surreptitiously marked on their head, and then presented with a mirror. Scores of studies have established that by 18 to 24 months, children investigate their own head upon seeing the mark in the mirror. Scores of papers have debated what this means. Suggestions range from rich interpretations (e.g., the development of self-awareness) to lean accounts (e.g., the development of proprioceptivevisual matching), and include numerous more moderate proposals (e.g., the development of a concept of one's face). In Study 1, 18-24-monthold toddlers were given the standard test and a novel task in which they were marked on their legs rather than on their face. Toddlers performed equivalently on both tasks, suggesting that passing the test does not rely on information specific to facial features. In Study 2, toddlers were surreptitiously slipped into trouser legs that were prefixed to a highchair. Toddlers failed to retrieve the sticker now that their legs looked different from expectations. This finding, together with the findings from a third study which showed that self-recognition in live video feedback develops later than mirror selfrecognition, suggests that performance is not solely the result of proprioceptive-visual matching.
Resumo:
This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.
Resumo:
A robust semi-implicit central partial difference algorithm for the numerical solution of coupled stochastic parabolic partial differential equations (PDEs) is described. This can be used for calculating correlation functions of systems of interacting stochastic fields. Such field equations can arise in the description of Hamiltonian and open systems in the physics of nonlinear processes, and may include multiplicative noise sources. The algorithm can be used for studying the properties of nonlinear quantum or classical field theories. The general approach is outlined and applied to a specific example, namely the quantum statistical fluctuations of ultra-short optical pulses in chi((2)) parametric waveguides. This example uses a non-diagonal coherent state representation, and correctly predicts the sub-shot noise level spectral fluctuations observed in homodyne detection measurements. It is expected that the methods used wilt be applicable for higher-order correlation functions and other physical problems as well. A stochastic differencing technique for reducing sampling errors is also introduced. This involves solving nonlinear stochastic parabolic PDEs in combination with a reference process, which uses the Wigner representation in the example presented here. A computer implementation on MIMD parallel architectures is discussed. (C) 1997 Academic Press.
Resumo:
Objective: The study we assessed how often patients who are manifesting a myocardial infarction (MI) would not be considered candidates for intensive lipid-lowering therapy based on the current guidelines. Methods: In 355 consecutive patients manifesting ST elevation MI (STEMI), admission plasma C-reactive protein (CRP) was measured and Framingham risk score (FRS), PROCAM risk score, Reynolds risk score, ASSIGN risk score, QRISK, and SCORE algorithms were applied. Cardiac computed tomography and carotid ultrasound were performed to assess the coronary artery calcium score (CAC), carotid intima-media thickness (cIMT) and the presence of carotid plaques. Results: Less than 50% of STEMI patients would be identified as having high risk before the event by any of these algorithms. With the exception of FRS (9%), all other algorithms would assign low risk to about half of the enrolled patients. Plasma CRP was <1.0 mg/L in 70% and >2 mg/L in 14% of the patients. The average cIMT was 0.8 +/- 0.2 mm and only in 24% of patients was >= 1.0 mm. Carotid plaques were found in 74% of patients. CAC > 100 was found in 66% of patients. Adding CAC >100 plus the presence of carotid plaque, a high-risk condition would be identified in 100% of the patients using any of the above mentioned algorithms. Conclusion: More than half of patients manifesting STEMI would not be considered as candidates for intensive preventive therapy by the current clinical algorithms. The addition of anatomical parameters such as CAC and the presence of carotid plaques can substantially reduce the CVD risk underestimation. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The concept of parameter-space size adjustment is pn,posed in order to enable successful application of genetic algorithms to continuous optimization problems. Performance of genetic algorithms with six different combinations of selection and reproduction mechanisms, with and without parameter-space size adjustment, were severely tested on eleven multiminima test functions. An algorithm with the best performance was employed for the determination of the model parameters of the optical constants of Pt, Ni and Cr.