940 resultados para National Science Foundation (U.S.). Research Applied to National Needs Program.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Airports worldwide are at a disadvantage when it comes to being able to spot birds and warn aircrews about the location of flocks either on the ground or close to the airfield. Birds simply cannot be easily seen during the day and are nearly invisible targets for planes at night or during low visibility. Thermal imaging (infrared) devices can be used to allow ground and tower personnel to pinpoint bird locations day or night, thus giving the airport operators the ability to launch countermeasures or simply warn the aircrews. This technology is available now, though it has been predominately isolated to medical and military system modifications. The cost of these devices has dropped significantly in recent years as technology, capability, and availability have continued to increase. Davison Army Airfield (DAAF), which is located about 20 miles south of Ronald Reagan National Airport in Washington, DC, is the transient home to many bird species including an abundance of ducks, seagulls, pigeons, and migrating Canadian geese. Over the past few years, DAAF implemented a variety of measures in an attempt to control the bird hazards on the airfield. Unfortunately, when it came to controlling these birds on or near our runways and aircraft movement areas we were more reactive than proactive. We would do airfield checks several times an hour to detect and deter any birds in these areas. The deterrents used included vehicle/human presence, pyrotechnics, and the periodic use of a trained border collie. At the time, we felt like we were doing all we could to reduce the threat to aircraft and human life. It was not until a near fatal accident in October 1998, when we truly realized how dangerous our operating environment really was to aircraft at or near the airfield. It was at this time, we had a C-12 (twin-engine passenger plane) land on our primary runway at night. The tower cleared the aircraft to land, and upon touchdown to the runway the aircraft collided with a flock of geese. Neither the tower nor the crew of the aircraft saw the geese because they were obscured in the darkness. The end result was 12 dead geese and $374,000 damage to the C-12. Fortunately, there were no human fatalities, but it was painfully clear we needed to improve our method of clearing the runway at night and during low visibility conditions. It was through this realization that we ventured to the U.S. Army Communications and Electronics Command for ideas on ways to deal with our threat. It was through a sub-organization within this command, Night Vision Labs, that we realized the possibilities of modifying thermal imagery and infrared technology to detecting wildlife on airports.
Resumo:
The rapid industrial development and disorganized population growth in huge cities bring about various urban problems due to intense use of physical space on and below the surface. Subsurface problems in metropolitan areas are caused by subway line construction, which often follows the routes of utility networks, such as electric and telephone cables, water and gas pipes, storm sewers, etc. Usually, the main problems are related to damage or destruction of preexisting utilities, often putting human lives at risk. With the purpose of minimizing risks. GPR-profiling with 200 MHz antennae was done at two sites, both located in downtown Sao Paulo, Brazil. The objectives of this work were to map utilities or existing infrastructure in the subsurface in order to orient the construction of the Line 4 (yellow) subway tunnel in Sao Paulo. GPR profiles can detect water pipes, utility networks in the subsurface, and concrete foundation columns or pilings in subsoil up to 2 m depth. In addition. the GPR profiles also provided details of the target shapes in the subsurface. GPR interpretations combined with lithological information from boreholes and trenches opened in the study areas were extremely important in mapping of the correct spatial distribution of buried utilities at these two sites in Sao Paulo. This information improves and updates maps of utility placement, serves as a basis for planning of the geotechnical excavation of the Line 4 (yellow) subway tunnel in Sao Paulo, helps minimize problems related to destruction of preexisting utilities in the subsoil, and avoids risk of dangerous accidents. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Neotropical evaniid genus Evaniscus Szepligeti currently includes six species. Two new species are described, Evaniscus lansdownei Mullins, sp. n. from Colombia and Brazil and E. rafaeli Kawada, sp. n. from Brazil. Evaniscus sulcigenis Roman, syn. n., is synonymized under E. rufithorax Enderlein. An identification key to species of Evaniscus is provided. Thirty-five parsimony informative morphological characters are analyzed for six ingroup and four outgroup taxa. A topology resulting in a monophyletic Evaniscus is presented with E. tibialis and E. rafaeli as sister to the remaining Evaniscus species. The Hymenoptera Anatomy Ontology and other relevant biomedical ontologies are employed to create semantic phenotype statements in Entity-Quality (EQ) format for species descriptions. This approach is an early effort to formalize species descriptions and to make descriptive data available to other domains.
Resumo:
Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (similar to 40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for giant magnetofossils, and that these organisms were globally distributed. Much more work is needed to understand the interplay between magnetofossil morphology, climate, nutrient availability, and environmental variability.
Resumo:
Introduction. Endomyocardial biopsy (EMB) plays an important role in allograft surveillance to screen an acute rejection episode after heart transplantation (HT), to diagnose an unknown cause of cardiomyopathies (CMP) or to reveal a cardiac tumor. However, the procedure is not risk free. Objective. The main objective of this research was to describe our experience with EMB during the last 33 years comparing surgical risk between FIT versus no-HT patients. Method. We analyzed retrospectively the data of 5347 EMBs performed from 1978 to 2011 (33 years). For surveillance of acute rejection episodes after HT we performed 3564 (66.7%), whereas 1777 (33.2%) for CMP diagnosis, and 6 (1.0%) for cardiac tumor identification. Results. The main complications due to EMB were divided into 2 groups to facilitate analysis: major complications associated with potential death risk, and minor complications. The variables that showed a significant difference in the HT group were as follows: tricuspid Injury (.0490) and coronary fistula (.0000). Among the no-HT cohort they were insufficient fragment (.0000), major complications (.0000) and total complications (.0000). Conclusions. EMB can be accomplished with a low risk of complications and high effectiveness to diagnose CMP and rejection after HT. However, the risk is great among patients with CMP due to their anatomic characteristics. Children also constitute a risk group for EMB due to their small size in addition to the heart disease. The risk of injury to the tricuspid valve was higher among the HT group.
Resumo:
In this paper, we carry out robust modeling and influence diagnostics in Birnbaum-Saunders (BS) regression models. Specifically, we present some aspects related to BS and log-BS distributions and their generalizations from the Student-t distribution, and develop BS-t regression models, including maximum likelihood estimation based on the EM algorithm and diagnostic tools. In addition, we apply the obtained results to real data from insurance, which shows the uses of the proposed model. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
This work proposes the development of an Adaptive Neuro-fuzzy Inference System (ANFIS) estimator applied to speed control in a three-phase induction motor sensorless drive. Usually, ANFIS is used to replace the traditional PI controller in induction motor drives. The evaluation of the estimation capability of the ANFIS in a sensorless drive is one of the contributions of this work. The ANFIS speed estimator is validated in a magnetizing flux oriented control scheme, consisting in one more contribution. As an open-loop estimator, it is applied to moderate performance drives and it is not the proposal of this work to solve the low and zero speed estimation problems. Simulations to evaluate the performance of the estimator considering the vector drive system were done from the Matlab/Simulink(R) software. To determine the benefits of the proposed model, a practical system was implemented using a voltage source inverter (VSI) to drive the motor and the vector control including the ANFIS estimator, which is carried out by the Real Time Toolbox from Matlab/Simulink(R) software and a data acquisition card from National Instruments.
Resumo:
[ES] El reto de conseguir una red eléctrica más eficiente pasa por la introducción masiva de energías renovables en la red eléctrica, disminuyendo así las emisiones de CO2. Por ello, se propone no sólo controlar la producción, como se ha hecho hasta ahora, sino que también se propone controlar la demanda. Por ello, en esta investigación se evalúa el uso de la Ingeniería Dirigida por Modelos para gestionar la complejidad en el modelado de redes eléctricas, la Inteligencia de Negocio para analizar la gran cantidad de datos de simulaciones y la Inteligencia Colectiva para optimizar el reparto de energía entre los millones de dispositivos que se encuentran en el lado de la demanda.
Resumo:
Bridging the gap between research and policy is of growing importance in international development. The National Centre of Competence in Research (NCCR) North-South has rich experience in collaborating beyond academic boundaries to make their research relevant to various societal actors. This publication is the first to provide an overview of the effectiveness of NCCR North-South researchers’ efforts to interact with policy, practice, and local communities with a view to effecting a change in practices. A systematic assessment of researchers’ interactions with non-academic partners is presented, based on principles of monitoring and evaluation. On this basis, tools for collective learning and widespread adaptation are proposed. The report shows with what types of societal actors NCCR North-South researchers collaborate and analyses examples of how researchers conduct dialogue beyond academic boundaries, leading to specific outcomes. It also explains the frame conditions considered decisive for successful and sustainable policy dialogue and concludes with recommendations about how the NCCR North-South can increase the effectiveness of its research for development. The publication is a valuable source of inspiration for those interested in better understanding how to generate the multiple benefits of making science relevant to society.