996 resultados para NUMERICAL-INTEGRATION
Resumo:
Elasticity is one of the most known capabilities related to cloud computing, being largely deployed reactively using thresholds. In this way, maximum and minimum limits are used to drive resource allocation and deallocation actions, leading to the following problem statements: How can cloud users set the threshold values to enable elasticity in their cloud applications? And what is the impact of the applications load pattern in the elasticity? This article tries to answer these questions for iterative high performance computing applications, showing the impact of both thresholds and load patterns on application performance and resource consumption. To accomplish this, we developed a reactive and PaaS-based elasticity model called AutoElastic and employed it over a private cloud to execute a numerical integration application. Here, we are presenting an analysis of best practices and possible optimizations regarding the elasticity and HPC pair. Considering the results, we observed that the maximum threshold influences the application time more than the minimum one. We concluded that threshold values close to 100% of CPU load are directly related to a weaker reactivity, postponing resource reconfiguration when its activation in advance could be pertinent for reducing the application runtime.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2015.
Resumo:
Visualization of vector fields plays an important role in research activities nowadays -- Web applications allow a fast, multi-platform and multi-device access to data, which results in the need of optimized applications to be implemented in both high-performance and low-performance devices -- Point trajectory calculation procedures usually perform repeated calculations due to the fact that several points might lie over the same trajectory -- This paper presents a new methodology to calculate point trajectories over highly-dense and uniformly-distributed grid of points in which the trajectories are forced to lie over the points in the grid -- Its advantages rely on a highly parallel computing architecture implementation and in the reduction of the computational effort to calculate the stream paths since unnecessary calculations are avoided, reusing data through iterations -- As case study, the visualization of oceanic currents through in the web platform is presented and analyzed, using WebGL as the parallel computing architecture and the rendering Application Programming Interface
Resumo:
Composition methods are useful when solving Ordinary Differential Equations (ODEs) as they increase the order of accuracy of a given basic numerical integration scheme. We will focus on sy-mmetric composition methods involving some basic second order symmetric integrator with different step sizes [17]. The introduction of symmetries into these methods simplifies the order conditions and reduces the number of unknowns. Several authors have worked in the search of the coefficients of these type of methods: the best method of order 8 has 17 stages [24], methods of order 8 and 15 stages were given in [29, 39, 40], 10-order methods of 31, 33 and 35 stages have been also found [24, 34]. In this work some techniques that we have built to obtain 10-order symmetric composition methods of symmetric integrators of s = 31 stages (16 order conditions) are explored. Given some starting coefficients that satisfy the simplest five order conditions, the process followed to obtain the coefficients that satisfy the sixteen order conditions is provided.
Resumo:
The multiphase flow occurrence in the oil and gas industry is common throughout fluid path, production, transportation and refining. The multiphase flow is defined as flow simultaneously composed of two or more phases with different properties and immiscible. An important computational tool for the design, planning and optimization production systems is multiphase flow simulation in pipelines and porous media, usually made by multiphase flow commercial simulators. The main purpose of the multiphase flow simulators is predicting pressure and temperature at any point at the production system. This work proposes the development of a multiphase flow simulator able to predict the dynamic pressure and temperature gradient in vertical, directional and horizontal wells. The prediction of pressure and temperature profiles was made by numerical integration using marching algorithm with empirical correlations and mechanistic model to predict pressure gradient. The development of this tool involved set of routines implemented through software programming Embarcadero C++ Builder® 2010 version, which allowed the creation of executable file compatible with Microsoft Windows® operating systems. The simulator validation was conduct by computational experiments and comparison the results with the PIPESIM®. In general, the developed simulator achieved excellent results compared with those obtained by PIPESIM and can be used as a tool to assist production systems development
Resumo:
The objective of this research is to synthesize structural composites designed with particular areas defined with custom modulus, strength and toughness values in order to improve the overall mechanical behavior of the composite. Such composites are defined and referred to as 3D-designer composites. These composites will be formed from liquid crystalline polymers and carbon nanotubes. The fabrication process is a variation of rapid prototyping process, which is a layered, additive-manufacturing approach. Composites formed using this process can be custom designed by apt modeling methods for superior performance in advanced applications. The focus of this research is on enhancement of Young's modulus in order to make the final composite stiffer. Strength and toughness of the final composite with respect to various applications is also discussed. We have taken into consideration the mechanical properties of final composite at different fiber volume content as well as at different orientations and lengths of the fibers. The orientation of the LC monomers is supposed to be carried out using electric or magnetic fields. A computer program is modeled incorporating the Mori-Tanaka modeling scheme to generate the stiffness matrix of the final composite. The final properties are then deduced from the stiffness matrix using composite micromechanics. Eshelby's tensor, required to calculate the stiffness tensor using Mori-Tanaka method, is calculated using a numerical scheme that determines the components of the Eshelby's tensor (Gavazzi and Lagoudas 1990). The numerical integration is solved using Gaussian Quadrature scheme and is worked out using MATLAB as well. . MATLAB provides a good deal of commands and algorithms that can be used efficiently to elaborate the continuum of the formula to its extents. Graphs are plotted using different combinations of results and parameters involved in finding these results
Resumo:
Within the classification of orbits in axisymmetric stellar systems, we present a new algorithm able to automatically classify the orbits according to their nature. The algorithm involves the application of the correlation integral method to the surface of section of the orbit; fitting the cumulative distribution function built with the consequents in the surface of section of the orbit, we can obtain the value of its logarithmic slope m which is directly related to the orbit’s nature: for slopes m ≈ 1 we expect the orbit to be regular, for slopes m ≈ 2 we expect it to be chaotic. With this method we have a fast and reliable way to classify orbits and, furthermore, we provide an analytical expression of the probability that an orbit is regular or chaotic given the logarithmic slope m of its correlation integral. Although this method works statistically well, the underlying algorithm can fail in some cases, misclassifying individual orbits under some peculiar circumstances. The performance of the algorithm benefits from a rich sampling of the traces of the SoS, which can be obtained with long numerical integration of orbits. Finally we note that the algorithm does not differentiate between the subtypes of regular orbits: resonantly trapped and untrapped orbits. Such distinction would be a useful feature, which we leave for future work. Since the result of the analysis is a probability linked to a Gaussian distribution, for the very definition of distribution, some orbits even if they have a certain nature are classified as belonging to the opposite class and create the probabilistic tails of the distribution. So while the method produces fair statistical results, it lacks in absolute classification precision.
Resumo:
The ability to represent the transport and fate of an oil slick at the sea surface is a formidable task. By using an accurate numerical representation of oil evolution and movement in seawater, the possibility to asses and reduce the oil-spill pollution risk can be greatly improved. The blowing of the wind on the sea surface generates ocean waves, which give rise to transport of pollutants by wave-induced velocities that are known as Stokes’ Drift velocities. The Stokes’ Drift transport associated to a random gravity wave field is a function of the wave Energy Spectra that statistically fully describe it and that can be provided by a wave numerical model. Therefore, in order to perform an accurate numerical simulation of the oil motion in seawater, a coupling of the oil-spill model with a wave forecasting model is needed. In this Thesis work, the coupling of the MEDSLIK-II oil-spill numerical model with the SWAN wind-wave numerical model has been performed and tested. In order to improve the knowledge of the wind-wave model and its numerical performances, a preliminary sensitivity study to different SWAN model configuration has been carried out. The SWAN model results have been compared with the ISPRA directional buoys located at Venezia, Ancona and Monopoli and the best model settings have been detected. Then, high resolution currents provided by a relocatable model (SURF) have been used to force both the wave and the oil-spill models and its coupling with the SWAN model has been tested. The trajectories of four drifters have been simulated by using JONSWAP parametric spectra or SWAN directional-frequency energy output spectra and results have been compared with the real paths traveled by the drifters.
Resumo:
The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
An improved class of Boussinesq systems of an arbitrary order using a wave surface elevation and velocity potential formulation is derived. Dissipative effects and wave generation due to a time-dependent varying seabed are included. Thus, high-order source functions are considered. For the reduction of the system order and maintenance of some dispersive characteristics of the higher-order models, an extra O(mu 2n+2) term (n ??? N) is included in the velocity potential expansion. We introduce a nonlocal continuous/discontinuous Galerkin FEM with inner penalty terms to calculate the numerical solutions of the improved fourth-order models. The discretization of the spatial variables is made using continuous P2 Lagrange elements. A predictor-corrector scheme with an initialization given by an explicit RungeKutta method is also used for the time-variable integration. Moreover, a CFL-type condition is deduced for the linear problem with a constant bathymetry. To demonstrate the applicability of the model, we considered several test cases. Improved stability is achieved.
Numerical Assessment of the out-of-plane response of a brick masonry structure without box behaviour
Resumo:
This paper presents the assessment of the out-of-plane response due to seismic loading of a masonry structure without rigid diaphragm. This structure corresponds to real scale brick masonry specimen with a main façade connected to two return walls. Two modelling approaches were defined for this evaluation. The first one consisted on macro modelling, whereas the second one on simplified micro modelling. As a first step of this study, static nonlinear analyses were conducted to the macro model aiming at evaluating the out-of-plane response and failure mechanism of the masonry structure. A sensibility analyses was performed in order to assess the mesh size and material model dependency. In addition, the macro models were subjected to dynamic nonlinear analyses with time integration in order to assess the collapse mechanism. Finally, these analyses were also applied to a simplified micro model of the masonry structure. Furthermore, these results were compared to experimental response from shaking table tests. It was observed that these numerical techniques simulate correctly the in-plane behaviour of masonry structures. However, the
Resumo:
This paper presents microlenses (MLs) with low f-number made of AZ4562 photoresist for integration on optical microsystems. The fabrication process was based on the thermal reflow and rehydration. Large series of MLs were fabricated with a width of 35 μm, a thickness of 5 μm, and spaced apart by 3 μm. The MLs were fabricated directly on the surface of a die with type n+/p-substrate junction photodiode fabricated in a standard CMOS process. The measured focal length was 49 μm with a tolerance of ±2 μm (maximum error of ±4%), resulting in a numerical aperture of 33.6 × 10-2 (±1.3 × 10-2). The measurements also revealed an f-number of 1.4.
Resumo:
In this paper we consider the approximate computation of isospectral flows based on finite integration methods( FIM) with radial basis functions( RBF) interpolation,a new algorithm is developed. Our method ensures the symmetry of the solutions. Numerical experiments demonstrate that the solutions have higher accuracy by our algorithm than by the second order Runge- Kutta( RK2) method.
Resumo:
"Series: Solid mechanics and its applications, vol. 226"