944 resultados para NON-IDEAL SYSTEM


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tuned liquid column dampers are U-tubes filled with some liquid, acting as an active vibration damper in structures of engineering interest like buildings and bridges. We study the effect of a tuned liquid column damper in a vibrating system consisting of a cart which vibrates under driving by a source with limited power supply (non-ideal excitation). The effect of a liquid damper is studied in some dynamical regimes characterized by coexistence of both periodic and chaotic motion. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate numerically the dynamical behavior of a non-ideal mechanical system consisting of a vibrating cart containing a particle which can oscillate back and forth colliding with walls carved in the cart. This system represents an impact damper for controlling high-amplitude vibrations and chaotic motion. The motion of the cart is induced by an in-board non-ideal motor driving an unbalanced rotor. We study the phase space of the cart and the bouncing particle, in particular the intertwined smooth and fractal basin boundary structure. The control of the chaotic motion of the cart due to the particle impacts is also investigated. Our numerical results suggests that impact dampers of small masses are effective to suppress chaos, but they also increase the final-state sensitivity of the system in its phase space. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A simple and illustrative rheonomic system is explored in the Lugrangian formalism. The difference between the Jacobi integral and the energy is highlighted. A sharp contrast with remarks found in the literature is pointed out. The non-conservative system possesses a Lagrangian that is not explicitly dependent on time and consequently there is a Jacobi integral. The Lagrange undetermined multiplier method is used as a complement to obtain a few interesting conclusions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background and Objectives - Sevoflurane is an inhalational anesthetic drug with low blood/gas solubility providing fast anesthesia induction and emergence. Its ability to maintain cardiovascular stability makes it ideal for pediatric anesthesia. The aim of this study was to evaluate hemodynamic stability, consumption of inhalational anesthetics and emergence time in children with and without premedication (midazolam or clonidine) anesthetized with sevoflurane titrated according to BIS monitoring. Methods - Participated in this study 30 patients aged 2 to 12 years, physical status ASA I, undergoing elective surgeries who were divided into 3 groups: G1 - without premedication, G2 - 0.5 mg.kg-1 oral midazolam, G3 - 4 μg.kg-1 oral clonidine 60 minutes before surgery. All patients received 30 μg.kg-1 alfentanil, 3 mg.kg-1 propofol, 0.5 mg.kg-1 atracurium, sevoflurane in different concentrations monitored by BIS (values close to 60) and N2O in a non rebreathing system. Systolic and diastolic blood pressure, heart rate, expired sevoflurane concentration (EC), sevoflurane consumption (ml.min-1) and emergence time were evaluated. Emergence time was defined as time elapsed between the end of anesthesia and patients' spontaneous movements trying to extubate themselves, crying and opening eyes and mouth. Results - There were no differences among groups as to systolic and diastolic blood pressure, EC, sevoflurane consumption and emergence time. Heart rate was lower in G3 group. Conclusions - Sevoflurane has provided hemodynamic stability. Premedication with clonidine and midazolam did not influence emergence time, inhaled anesthetic consumption or maintenance of anesthesia with sevoflurane. Anesthesia duration has also not influenced emergence time. Hypnosis monitoring was important for balancing anesthetic levels and this might have been responsible for the similarity of emergence times for all studied groups.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a mathematical model is derived via Lagrange's Equation for a shear building structure that acts as a foundation of a non-ideal direct current electric motor, controlled by a mass loose inside a circular carving. Non-ideal sources of vibrations of structures are those whose characteristics are coupled to the motion of the structure, not being a function of time only as in the ideal case. Thus, in this case, an additional equation of motion is written, related to the motor rotation, coupled to the equation describing the horizontal motion of the shear building. This kind of problem can lead to the so-called Sommerfeld effect: steady state frequencies of the motor will usually increase as more power (voltage) is given to it in a step-by-step fashion. When a resonance condition with the structure is reached, the better part of this energy is consumed to generate large amplitude vibrations of the foundation without sensible change of the motor frequency as before. If additional increase steps in voltage are made, one may reach a situation where the rotor will jump to higher rotation regimes, no steady states being stable in between. As a device of passive control of both large amplitude vibrations and the Sommerfeld effect, a scheme is proposed using a point mass free to bounce back and forth inside a circular carving in the suspended mass of the structure. Numerical simulations of the model are also presented Copyright © 2007 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a nonlinear dynamic analysis of a flexible portal frame subjected to support excitation, which is provided by an electro-dynamical shaker. The problem is reduced to a mathematical model of four degrees of freedom and the equations of motion are derived via Lagrangian formulation. The main goal of this study is to investigate the dynamic interactions between a flexible portal frame and a non-ideal support excitation. The numerical analysis shows a complex behavior of the system, which can be observed by phase spaces, Poincaŕ sections and bifurcation diagrams. © 2012 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work, considers a vibrating system, which consists of a snap-through truss absorber (STTA) coupled to an oscillator, under excitation of an DC motor, with an eccentricity and limited power, characterizing a non-ideal oscillator (NIO). It is aimed to use the absorber STTA, to establish the conditions, that we have the maxim attenuation of the jumpphenomenon (Sommerfeld Effect). Here, weare interestedin determining the conditions of the vibrating system, in which there arereduced amplitudes of the oscillator, when it passes through the region of resonance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recently, research on energy harvesting has increased substantially. Many researchers have concentrated their efforts to find the best configuration for these systems and to optimize their output power. In the process of energy harvesting, the electric energy is obtained by converting mechanics energy created by an environment vibration source by a transducer, for example, a thin piezoceramic film. That vibration source is, for example, a beam suffering some mechanic force able to generate a vibration in it, an oscillating beam is the best properly used example. Different mechanisms of electromechanical coupling have been developed to harvesting devices, and a particular interest has been given to the use of models that transform the mechanical vibration into electrical current using a piezoelectric element. In this paper we propose a model to energy harvesting from vibrations, from an oscillating beam, including non-linearities in the piezoelectric coupling and a non-ideal excitation in the material. From this model, it was developed a system to obtain some results about the harvested power by the material. It was demonstrated that the power captured was influenced by the effect of the nonlinearities of the piezoelectric coupling, modifying the system dynamic behavior

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)