949 resultados para NEARBY GALAXIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the nature of extremely red galaxies (ERGs), objects whose colours are redder than those found in the red sequence present in colour–magnitude diagrams of galaxies. We selected from the Sloan Digital Sky Survey Data Release 7 a volume-limited sample of such galaxies in the redshift interval 0.010 < z < 0.030, brighter than Mr = −17.8 (magnitudes dereddened, corrected for the Milky Way extinction) and with (g − r) colours larger than those of galaxies in the red sequence. This sample contains 416 ERGs, which were classified visually. Our classification was cross-checked with other classifications available in the literature. We found from our visual classification that the majority of objects in our sample are edge-on spirals (73 per cent). Other spirals correspond to 13 per cent, whereas elliptical galaxies comprise only 11 per cent of the objects. After comparing the morphological mix and the distributions of Hα/Hβ and axial ratios of ERGs and objects in the red sequence, we suggest that dust, more than stellar population effects, is the driver of the red colours found in these extremely red galaxies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Centro de Biodiversidad y Gestión Ambiental, Facultad de Ciencias del Mar, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thanks to the Chandra and XMM–Newton surveys, the hard X-ray sky is now probed down to a flux limit where the bulk of the X-ray background is almost completely resolved into discrete sources, at least in the 2–8 keV band. Extensive programs of multiwavelength follow-up observations showed that the large majority of hard X–ray selected sources are identified with Active Galactic Nuclei (AGN) spanning a broad range of redshifts, luminosities and optical properties. A sizable fraction of relatively luminous X-ray sources hosting an active, presumably obscured, nucleus would not have been easily recognized as such on the basis of optical observations because characterized by “peculiar” optical properties. In my PhD thesis, I will focus the attention on the nature of two classes of hard X-ray selected “elusive” sources: those characterized by high X-ray-to-optical flux ratios and red optical-to-near-infrared colors, a fraction of which associated with Type 2 quasars, and the X-ray bright optically normal galaxies, also known as XBONGs. In order to characterize the properties of these classes of elusive AGN, the datasets of several deep and large-area surveys have been fully exploited. The first class of “elusive” sources is characterized by X-ray-to-optical flux ratios (X/O) significantly higher than what is generally observed from unobscured quasars and Seyfert galaxies. The properties of well defined samples of high X/O sources detected at bright X–ray fluxes suggest that X/O selection is highly efficient in sampling high–redshift obscured quasars. At the limits of deep Chandra surveys (∼10−16 erg cm−2 s−1), high X/O sources are generally characterized by extremely faint optical magnitudes, hence their spectroscopic identification is hardly feasible even with the largest telescopes. In this framework, a detailed investigation of their X-ray properties may provide useful information on the nature of this important component of the X-ray source population. The X-ray data of the deepest X-ray observations ever performed, the Chandra deep fields, allows us to characterize the average X-ray properties of the high X/O population. The results of spectral analysis clearly indicate that the high X/O sources represent the most obscured component of the X–ray background. Their spectra are harder (G ∼ 1) than any other class of sources in the deep fields and also of the XRB spectrum (G ≈ 1.4). In order to better understand the AGN physics and evolution, a much better knowledge of the redshift, luminosity and spectral energy distributions (SEDs) of elusive AGN is of paramount importance. The recent COSMOS survey provides the necessary multiwavelength database to characterize the SEDs of a statistically robust sample of obscured sources. The combination of high X/O and red-colors offers a powerful tool to select obscured luminous objects at high redshift. A large sample of X-ray emitting extremely red objects (R−K >5) has been collected and their optical-infrared properties have been studied. In particular, using an appropriate SED fitting procedure, the nuclear and the host galaxy components have been deconvolved over a large range of wavelengths and ptical nuclear extinctions, black hole masses and Eddington ratios have been estimated. It is important to remark that the combination of hard X-ray selection and extreme red colors is highly efficient in picking up highly obscured, luminous sources at high redshift. Although the XBONGs do not present a new source population, the interest on the nature of these sources has gained a renewed attention after the discovery of several examples from recent Chandra and XMM–Newton surveys. Even though several possibilities were proposed in recent literature to explain why a relatively luminous (LX = 1042 − 1043erg s−1) hard X-ray source does not leave any significant signature of its presence in terms of optical emission lines, the very nature of XBONGs is still subject of debate. Good-quality photometric near-infrared data (ISAAC/VLT) of 4 low-redshift XBONGs from the HELLAS2XMMsurvey have been used to search for the presence of the putative nucleus, applying the surface-brightness decomposition technique. In two out of the four sources, the presence of a nuclear weak component hosted by a bright galaxy has been revealed. The results indicate that moderate amounts of gas and dust, covering a large solid angle (possibly 4p) at the nuclear source, may explain the lack of optical emission lines. A weak nucleus not able to produce suffcient UV photons may provide an alternative or additional explanation. On the basis of an admittedly small sample, we conclude that XBONGs constitute a mixed bag rather than a new source population. When the presence of a nucleus is revealed, it turns out to be mildly absorbed and hosted by a bright galaxy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Thesis, we investigate the cosmological co-evolution of supermassive black holes (BHs), Active Galactic Nuclei (AGN) and their hosting dark matter (DM) halos and galaxies, within the standard CDM scenario. We analyze both analytic, semi-analytic and hybrid techniques and use the most recent observational data available to constrain the assumptions underlying our models. First, we focus on very simple analytic models where the assembly of BHs is directly related to the merger history of DM haloes. For this purpose, we implement the two original analytic models of Wyithe & Loeb 2002 and Wyithe & Loeb 2003, compare their predictions to the AGN luminosity function and clustering data, and discuss possible modifications to the models that improve the match to the observation. Then we study more sophisticated semi-analytic models in which however the baryonic physics is neglected as well. Finally we improve the hybrid simulation of De Lucia & Blaizot 2007, adding new semi-analytical prescriptions to describe the BH mass accretion rate during each merger event and its conversion into radiation, and compare the derived BH scaling relations, fundamental plane and mass function, and the AGN luminosity function with observations. All our results support the following scenario: • The cosmological co-evolution of BHs, AGN and galaxies can be well described within the CDM model. • At redshifts z & 1, the evolution history of DM halo fully determines the overall properties of the BH and AGN populations. The AGN emission is triggered mainly by DM halo major mergers and, on average, AGN shine at their Eddington luminosity. • At redshifts z . 1, BH growth decouples from halo growth. Galaxy major mergers cannot constitute the only trigger to accretion episodes in this phase. • When a static hot halo has formed around a galaxy, a fraction of the hot gas continuously accretes onto the central BH, causing a low-energy “radio” activity at the galactic centre, which prevents significant gas cooling and thus limiting the mass of the central galaxies and quenching the star formation at late time. • The cold gas fraction accreted by BHs at high redshifts seems to be larger than at low redshifts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]The dynamic throug-soil interaction between nearby pile supported structures in a viscoelastic half-space, under incident S and Rayleigh waves, is numerically studied. To this end, a three-dimensional viscoelastic BEM-FEM formulation for the dynamic analysis of piles and pile groups in the frequency domain is used, where soil is modelled by BEM and piles are simulated by one-dimensional finite elements as Bernouilli beams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this PhD thesis is the study of the nuclear properties of radio loud AGN. Multiple and/or recent mergers in the host galaxy and/or the presence of cool core in galaxy clusters can play a role in the formation and evolution of the radio source. Being a unique class of objects (Lin & Mohr 2004), we focus on Brightest Cluster Galaxies (BCGs). We investigate their parsec scale radio emission with VLBI (Very Long Baseline Interferometer) observations. From literature or new data , we collect and analyse VLBA (Very Long Baseline) observations at 5 GHz of a complete sample of BCGs and ``normal'' radio galaxies (Bologna Complete Sample , BCS). Results on nuclear properties of BCGs are coming from the comparison with the results for the Bologna COmplete Sample (BCS). Our analysis finds a possible dichotomy between BCGs in cool-core clusters and those in non-cool-core clusters. Only one-sided BCGs have similar kinematic properties with FRIs. Furthermore, the dominance of two-sided jet structures only in cooling clusters suggests sub-relativistic jet velocities. The different jet properties can be related to a different jet origin or to the interaction with a different ISM. We larger discuss on possible explanation of this.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this thesis is to analyze the possibility of using early-type galaxies to place evolutionary and cosmological constraints, by both disentangling what is the main driver of ETGs evolution between mass and environment, and developing a technique to constrain H(z) and the cosmological parameters studying the ETGs age-redshift relation. The (U-V) rest-frame color distribution is studied as a function of mass and environment for two sample of ETGs up to z=1, extracted from the zCOSMOS survey with a new selection criterion. The color distributions and the slopes of the color-mass and color-environment relations are studied, finding a strong dependence on mass and a minor dependence on environment. The spectral analysis performed on the D4000 and Hδ features gives results validating the previous analysis. The main driver of galaxy evolution is found to be the galaxy mass, the environment playing a subdominant but non negligible role. The age distribution of ETGs is also analyzed as a function of mass, providing strong evidences supporting a downsizing scenario. The possibility of setting cosmological constraints studying the age-redshift relation is studied, discussing the relative degeneracies and model dependencies. A new approach is developed, aiming to minimize the impact of systematics on the “cosmic chronometer” method. Analyzing theoretical models, it is demonstrated that the D4000 is a feature correlated almost linearly with age at fixed metallicity, depending only minorly on the models assumed or on the SFH chosen. The analysis of a SDSS sample of ETGs shows that it is possible to use the differential D4000 evolution of the galaxies to set constraints to cosmological parameters in an almost model-independent way. Values of the Hubble constant and of the dark energy EoS parameter are found, which are not only fully compatible, but also with a comparable error budget with the latest results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Thesis studies the dynamics of hot and cold gas outside the plane in galaxies like the Milky-Way (extra-planar gas) and focuses on the interaction between disc and halo material. Stationary models for the cold phase of the extra-planar gas are presented. They show that the kinematics of this phase must be influenced by the interaction with an ambient medium that we identify as the hot cosmological corona that surrounds disc galaxies. To study this interaction a novel hydrodynamical code has been implemented and a series of hydrodynamical simulations has been run to investigate the mass and momentum exchange between the cold extra-planar gas clouds and the hot corona. These simulations show that the coronal gas can condense efficiently in the turbulent wakes that form behind the cold clouds and it can be accreted by the disc to sustain star formation. They also predict that the corona cannot be a static structure but it must rotate and lag by approximately 80-120 km/s with respect to the disc. Implications of the results of this Thesis for the evolution of star-forming galaxies and for the large-scale dynamics of galactic coronae are also briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is to investigate the strength and structure of the magnetized medium surrounding radio galaxies via observations of the Faraday effect. This study is based on an analysis of the polarization properties of radio galaxies selected to have a range of morphologies (elongated tails, or lobes with small axial ratios) and to be located in a variety of environments (from rich cluster core to small group). The targets include famous objects like M84 and M87. A key aspect of this work is the combination of accurate radio imaging with high-quality X-ray data for the gas surrounding the sources. Although the focus of this thesis is primarily observational, I developed analytical models and performed two- and three-dimensional numerical simulations of magnetic fields. The steps of the thesis are: (a) to analyze new and archival observations of Faraday rotation measure (RM) across radio galaxies and (b) to interpret these and existing RM images using sophisticated two and three-dimensional Monte Carlo simulations. The approach has been to select a few bright, very extended and highly polarized radio galaxies. This is essential to have high signal-to-noise in polarization over large enough areas to allow computation of spatial statistics such as the structure function (and hence the power spectrum) of rotation measure, which requires a large number of independent measurements. New and archival Very Large Array observations of the target sources have been analyzed in combination with high-quality X-ray data from the Chandra, XMM-Newton and ROSAT satellites. The work has been carried out by making use of: 1) Analytical predictions of the RM structure functions to quantify the RM statistics and to constrain the power spectra of the RM and magnetic field. 2) Two-dimensional Monte Carlo simulations to address the effect of an incomplete sampling of RM distribution and so to determine errors for the power spectra. 3) Methods to combine measurements of RM and depolarization in order to constrain the magnetic-field power spectrum on small scales. 4) Three-dimensional models of the group/cluster environments, including different magnetic field power spectra and gas density distributions. This thesis has shown that the magnetized medium surrounding radio galaxies appears more complicated than was apparent from earlier work. Three distinct types of magnetic-field structure are identified: an isotropic component with large-scale fluctuations, plausibly associated with the intergalactic medium not affected by the presence of a radio source; a well-ordered field draped around the front ends of the radio lobes and a field with small-scale fluctuations in rims of compressed gas surrounding the inner lobes, perhaps associated with a mixing layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that massive black holes have a profound effect on the evolution of galaxies, and possibly on their formation by regulating the amount of gas available for the star formation. However, how black hole and galaxies communicate is still an open problem, depending on how much of the energy released interacts with the circumnuclear matter. In the last years, most studies of feedback have primarily focused on AGN jet/cavity systems in the most massive galaxy clusters. This thesis intends to investigate the feedback phenomena in radio--loud AGNs from a different perspective studying isolated radio galaxies, through high-resolution spectroscopy. In particular one NLRG and three BLRG are studied, searching for warm gas, both in emission and absorption, in the soft X-ray band. I show that the soft spectrum of 3C33 originates from gas photoionized by the central engine. I found for the first time WA in 3C382 and 3C390.3. I show that the observed warm emitter/absorbers is not uniform and probably located in the NLR. The detected WA is slow implying a mass outflow rate and kinetic luminosity always well below 1% the L(acc) as well as the P(jet). Finally the radio--loud properties are compared with those of type 1 RQ AGNs. A positive correlation is found between the mass outflow rate/kinetic luminosity, and the radio loudness. This seems to suggest that the presence of a radio source (the jet?) affects the distribution of the absorbing gas. Alternatively, if the gas distribution is similar in Seyferts and radio galaxies, the M(out) vs rl relation could simply indicate a major ejection of matter in the form of wind in powerful radio AGNs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is devoted to the study of the properties of high-redsfhit galaxies in the epoch 1 < z < 3, when a substantial fraction of galaxy mass was assembled, and when the evolution of the star-formation rate density peaked. Following a multi-perspective approach and using the most recent and high-quality data available (spectra, photometry and imaging), the morphologies and the star-formation properties of high-redsfhit galaxies were investigated. Through an accurate morphological analyses, the built up of the Hubble sequence was placed around z ~ 2.5. High-redshift galaxies appear, in general, much more irregular and asymmetric than local ones. Moreover, the occurrence of morphological k-­correction is less pronounced than in the local Universe. Different star-formation rate indicators were also studied. The comparison of ultra-violet and optical based estimates, with the values derived from infra-red luminosity showed that the traditional way of addressing the dust obscuration is problematic, at high-redshifts, and new models of dust geometry and composition are required. Finally, by means of stacking techniques applied to rest-frame ultra-violet spectra of star-forming galaxies at z~2, the warm phase of galactic-scale outflows was studied. Evidence was found of escaping gas at velocities of ~ 100 km/s. Studying the correlation of inter-­stellar absorption lines equivalent widths with galaxy physical properties, the intensity of the outflow-related spectral features was proven to depend strongly on a combination of the velocity dispersion of the gas and its geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early-Type galaxies (ETGs) are embedded in hot (10^6-10^7 K), X-ray emitting gaseous haloes, produced mainly by stellar winds and heated by Type Ia supernovae explosions, by the thermalization of stellar motions and occasionally by the central super-massive black hole (SMBH). In particular, the thermalization of the stellar motions is due to the interaction between the stellar and the SNIa ejecta and the hot interstellar medium (ISM) already residing in the ETG. A number of different astrophysical phenomena determine the X-ray properties of the hot ISM, such as stellar population formation and evolution, galaxy structure and internal kinematics, Active Galactic Nuclei (AGN) presence, and environmental effects. With the aid of high-resolution hydrodynamical simulations performed on state-of-the-art galaxy models, in this Thesis we focus on the effects of galaxy shape, stellar kinematics and star formation on the evolution of the X-ray coronae of ETGs. Numerical simulations show that the relative importance of flattening and rotation are functions of the galaxy mass: at low galaxy masses, adding flattening and rotation induces a galactic wind, thus lowering the X-ray luminosity; at high galaxy masses the angular momentum conservation keeps the central regions of rotating galaxies at low density, whereas in non-rotating models a denser and brighter atmosphere is formed. The same dependence from the galaxy mass is present in the effects of star formation (SF): in light galaxies SF contributes to increase the spread in Lx, while at high galaxy masses the halo X-ray properties are marginally sensitive to SF effects. In every case, the star formation rate at the present epoch quite agrees with observations, and the massive, cold gaseous discs are partially or completely consumed by SF on a time-scale of few Gyr, excluding the presence of young stellar discs at the present epoch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questo elaborato abbiamo analizzato un campione di 22 galssie early-type. Utilizzando una tecnica di cross-correlazione, abbiamo ottenuto profili radiali di rotazione e di dis- persione di velocitá. Questi dati ci hanno permesso di investigare molte delle proprietá dinamiche delle nostre galassie. Abbiamo ottenuto indizi sull’anisotropia orbitale e stimato le masse e il rapporto M/L del campione. Le masse misurate variano da 1010 a 1012 M , mentre i valori degli M/L, per cui abbiamo trovato una dipendenza del tipo Log M/L ∝ 0.28 Log L , sono dell’ordine dell’unitá. Abbiamo anche riprodotto le famose relazioni di scala e abbi- amo utlizzato un set di dati sugli indici di Lick/IDS per ricercare relazioni tra le proprietá chimiche e quelle dinamiche. In particolare, abbiamo riscontrato una correlazione tra molti degli indici dipendenti dalla metallicitá e la profonditá della buca di potenziale. Tali indici sembrano correlare anche con il M/L. La rotazione e la forma del profilo di dispersione di velocitá sembrano essere ininfluenti sulle proprietá chimiche. In ultima analisi, abbiamo considerato le implicazioni delle nostre misure riguardo la natura della popolazione stellare e dell’emissione X delle nostre galassie. L’indice di colore e il M/L sembrano indicare che la popolazione stellare delle nostre galassie é dominata da stelle appartenenti alle classi spettrali late-G e early-K. Sembra inoltre esserci una correlazione tra l’emissione X degli elementi del nostro campione e la profonditá della loro buca di potenziale.