954 resultados para N-alkyl-2-methyl-3- benzylimidazolium iodide salts
Resumo:
Monodisperse polyhedral In(2)O(3) nanoparticles were synthesized by differential mobility classification of a polydisperse aerosol formed by evaporation of indium at atmospheric pressure. When free molten indium particles oxidize, oxygen is absorbed preferentially on certain planes leading to the formation of polyhedral In(2)O(3) nanoparticles. It is shown that the position of oxygen addition, its concentration, the annealing temperature and the type of carrier gas are crucial for the resulting particle shape and crystalline quality. Semiconducting nanopolyhedrals, especially nanocubes used for sensors, are expected to offer enhanced sensitivity and improved response time due to the higher surface area as compared to spherical particles.
Resumo:
High density transparent glasses (7.86 g/cc) were fabricated in the 2Bi(2)O(3)-B2O3 (BBO) system. Optical band gap of the obtained glasses was found to be 2.6eV. The refractive index measured for these glasses was 2.25 +/- 0.05 at lambda=543 nm. Nonlinear refraction and absorption studies were carried out on the BBO glasses using z-scan technique a lambda=532 nm of 10 ns pulse width. The nonlinear refractive index obtained was n(2)=12.1x10(-14) cm(2)/W and nonlinear absorption coefficient was beta=15.2 cm/GW. The n(2) and beta values of the BBO glasses were large compared to the other reported high index bismuth based oxide glass systems in the literature. These were attributed to the high density, high linear refractive index, low band gap and two photon absorption associated with these glasses. The electronic origin of large nonlinearities was discussed based on bond-orbital theory.
Resumo:
4,5-Dihydroisoxazoles continue to attract considerable interest due to their wide spread biological activities. Here, we identify an efficient protocol for the preparation of 4,5-dihydroisoxazoles (2-isaxazolines) (4a-g) from quinolinyl chalcones. The nucleolytic activities of synthesized compounds were investigated by agarose gel electrophoresis. All these compounds were showed the remarkable DNA cleavage activity (concentration dependent) with pUC19 DNA at 365 nm UV light. The DNA cleavage activity was significantly enhanced by the presence of iminyl and carboxy radicals of DIQ. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, (3R,4S,5S,6R)-5-methoxy-4-(2R,3R)-2-methyl-3-(3-methylbut-2-enyl) oxiran-2-yl]-1-oxaspiro2.5]octan-6-yl] N-(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only similar to 10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ((3R, 4S, 5S, 6R)-5-methoxy-4-(2R, 3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro2.5]octan-6 -yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.
Resumo:
Background: Due to the functional defects in apoptosis signaling molecules or deficient activation of apoptosis pathways, leukemia has become an aggressive disease with poor prognosis. Although the majority of leukemia patients initially respond to chemotherapy, relapse is still the leading cause of death. Hence targeting apoptosis pathway would be a promising strategy for the improved treatment of leukemia. Hydantoin derivatives possess a wide range of important biological and pharmacological properties including anticancer properties. Here we investigated the antileukemic activity and mechanism of action of one of the potent azaspiro hydantoin derivative, (ASHD). Materials and Methods: To investigate the antileukemic efficacy of ASHD, we have used MTT assay, cell cycle analysis by FACS, tritiated thymidine incorporation assay, Annexin V staining, JC1 staining and western blot analysis. Results: Results showed that ASHD was approximately 3-fold more potent than the parent compounds in inducing cytotoxicity. Tritiated thymidine assay in conjunction with cell cycle analysis suggests that ASHD inhibited the growth of leukemic cells. The limited effect of ASHD on cell viability of normal cells indicated that it may be specifically directed to cancer cells. Translocation of phosphatidyl serine, activation of caspase 3, caspase 9, PARP, alteration in the ratio of BCL2/BAD protein expression as well as the loss of mitochondrial membrane potential suggests activation of the intrinsic pathway of apoptosis. Conclusion: These results could facilitate the future development of novel hydantoin derivatives as chemotherapeutic agents for leukemia.
Resumo:
Skutterudites Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were synthesized by induction melting at 1273 K, followed by annealing at 923 K for 144 h. X-ray powder diffraction and electron microprobe analysis confirmed the presence of the skutterudite phase as the main phase. The temperature-dependent transport properties were measured for all the samples from 300 to 818 K. A positive Seebeck coefficient (holes are majority carriers) was obtained in Fe0.2Co3.8Sb 12 in the whole temperature range. Thermally excited carriers changed from n-type to p-type in Fe(0.)2Co(3.8)Sb(12),Te-x 19Te0.1 at 570 K, while in all the other samples, Fe(0.)2Co(3.8)Sb(12),Te-x (x = 0.2, 0.3, 0.4, 0.5, 0.6) exhibited negative Seebeck coefficients in the entire temperature range measured. Whereas for the alloys up to x = 0.2 (Fe(0.)2Co(3.8)Sb(12),Te-x ) the electrical resistivity decreased by charge compensation, it increased for x> 0.2 with an increase in Te content as a result of an increase in the electron concentration. The thermal conductivity decreased with Te substitution owing to carrier phonon scattering and point defect scattering. The maximum dimensionless thermoelectric figure of merit, ZT = 1.04 at 818 K, was obtained with an optimized Te content for Fe0.2Co3.8Sb1 1.5Te0.5 and a carrier concentration of,,J1/ =- 3.0 x 1020 CM-3 at room temperature. Thermal expansion (a = 8.8 x 10-6 K-1), as measured for Fe(0.)2Co(3.8)Sb(12),Te-x , compared well with that of undoped Co4Sb12. A further increase in the thermoelectric figure of merit up to ZT = 1.3 at 820 K was achieved for Fe(0.)2Co(3.8)Sb(12),Te-x , applying severe plastic deformation in terms of a high-pressure torsion process. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The ferroelectric system (1-x)PbZrO3-(x)Bi(Mg1/2Ti1/2)O-3 has been investigated as a function of composition, temperature, and electric field by x-ray powder diffraction, dielectric, and ferroelectric measurements. Within the solubility limit (x similar to 0.25), the system evolves from an orthorhombic-antiferroelectric to rhombohedral-ferroelectric state through a phase coexistence region. The highest polarization was found not for the composition exhibiting a pure ferroelectric state, but for a composition x = 0.15 exhibiting ferroelectric + antiferroelectric phase coexistence close to the rhombohedral phase boundary. Electric poling of the equilibrium two-phase state led to irreversible enhancement in the rhombohedral phase fraction suggesting that the enhanced polarization is related to the enhanced polarizability of the lattice due to first order criticality as in ferroelectric-ferroelectric morphotropic phase boundary systems. (C) 2013 AIP Publishing LLC.
Resumo:
Monophasic Ba2NaNb5O15 was crystallized at nanometer scale (12-36 nm) in 2BaO-0.5Na(2)O-2.5Nb(2)O(5)- 4.5B(2)O(3) glass system. To begin with, optically transparent glasses, in this system, were fabricated via the conventional melt. quenching technique. The amorphous and glassy characteristics of the as-quenched samples were respectively confirmed by X-ray powder diffraction and differential thermal analyses. Nearly homogeneous distribution of Ba2NaNb5O15 (BNN) nanocrystals associated with tungsten bronze structure akin to their bulk parent structure was accomplished by subjecting the as-fabricated glasses to appropriate heat-treatment temperatures. Indeed transmission electron microscopy (TEM) carried out on these samples corroborated the presence of Ba2NaNb5O15 nanocrystals dispersed in a continuous glass matrix. The as-quenched glasses were similar to 75% transparent in the visible range of the electromagnetic spectrum. The optical band gap and refractive index were found to have crystallite size (at nanoscale) dependence. The optical band gap increased with the decrease in crystallite size. The refractive indices of the glass nanocrystal composites as determined by Brewster angle method were rationalized using different empirical models. The refractive index dispersion with wavelength of light was analyzed on the basis of the Sellmeier relations. At room temperature under UV excitation (355 nm) these glass nanocrystal composites displayed violet-blue emission which was ascribed to the defects states.
Resumo:
A new series of donor-acceptor-donor (D-A-D) type luminescent mesogens carrying 2-methoxy-3-cyanopyridine as a central core linked with variable alkoxy chain lengths (m = 6 and 8) as terminal substituents was synthesized and characterized using spectral methods. The newly synthesized molecules were subjected to single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), differential scanning calorimetric (DSC), polarizing optical microscopy (POM), and fluorescence emission studies in order to ascertain their mesogenic and photophysical properties. The SCXRD data on 4a and 4b reveal that the presence of short intermolecular contacts, viz. C-H center dot center dot center dot N, C-H center dot center dot center dot O, C-H center dot center dot center dot pi, and pi center dot center dot center dot pi interactions, is responsible for their crystal packing. The measured torsion angle values indicate that molecules possess distorted non-planar structure. The DSC, POM, and PXRD studies confirm that all the molecules show thermotropic liquid crystalline behaviour and exhibit rectangular columnar phase. Further, their UV-visible and fluorescence spectral studies reveal that the target molecules are luminescent displaying a strong absorption band in the range of 335-340 nm and a blue fluorescence emission band in the range of 395-425 nm (both in solution and film state) with good fluorescence quantum yields (10-49 %).
Resumo:
Experimental and theoretical charge density analyses on 2,2-dibromo-2,3-dihydroinden-1-one have been carried out to quantify the topological features of a short CBr....O halogen bond with nearly linear geometry (2.922 angstrom, angle CBr....O = 172.7 degrees) and to assess the strength of the interactions using the topological features of the electron density. The electrostatic potential map indicates the presence of the s-hole on bromine, while the interaction energy is comparable to that of a moderate OH....O hydrogen bond. In addition, the energetic contribution of CH.....Br interaction is demonstrated to be on par with that of the CBr....O halogen bond in stabilizing the crystal structure.
Resumo:
The temperature (300-973K) and frequency (100Hz-10MHz) response of the dielectric and impedance characteristics of 2BaO-0.5Na(2)O-2.5Nb(2)O(5)-4.5B(2)O(3) glasses and glass nanocrystal composites were studied. The dielectric constant of the glass was found to be almost independent of frequency (100Hz-10MHz) and temperature (300-600K). The temperature coefficient of dielectric constant was 8 +/- 3ppm/K in the 300-600K temperature range. The relaxation and conduction phenomena were rationalized using modulus formalism and universal AC conductivity exponential power law, respectively. The observed relaxation behavior was found to be thermally activated. The complex impedance data were fitted using the least square method. Dispersion of Barium Sodium Niobate (BNN) phase at nanoscale in a glass matrix resulted in the formation of space charge around crystal-glass interface, leading to a high value of effective dielectric constant especially for the samples heat-treated at higher temperatures. The fabricated glass nanocrystal composites exhibited P versus E hysteresis loops at room temperature and the remnant polarization (P-r) increased with the increase in crystallite size.
Resumo:
We report the origin of room temperature (RT) ferromagnetic and ferroelectric properties of Pb(Fe1/2Nb1/2)O-3 (PFN) ceramic sample prepared by modified solid-state reaction synthesis by a single-step method, based on X-ray diffraction (XRD), neutron diffraction (ND), Mossbauer spectroscopy and electron paramagnetic resonance (EPR) spectroscopy results. Formation of single-phase monoclinic PFN ceramic with Cm space group was confirmed by XRD and ND at RT. The morphology studied by scanning electron microscopy (SEM) confirmed uniform microstructure of the sample with average grain size of similar to 2 mu m. The ND, Mossbauer spectroscopy, M-H loop and EPR studies were carried out to confirm the existence of weak ferromagnetism at RT. A clear opening of hysteresis (M-H) loop is evidenced as the existence of weak ferromagnetism at RT. EPR spectrum clearly shows the ferromagnetism through a good resonance signal. The symmetric EPR line shape with g = 1.9895 observed in PFN sample was identified to be due to Fe3+ ions. Mossbauer spectroscopy at RT shows superparamagnetic behaviour with presence of Fe in 3+ valence state. Ferroelectric P-E loops on PFN at RT confirm the existing ferroelectric ordering. Our observation is in agreement with literature, and it supports that the origin of ferromagnetism and ferroelectricity is isolated, i.e. from different regions in the sample. Our results do not support the multiferroic nature of PFN at RT.
Resumo:
An organic solid, 4,7-dibromo-5,6-dinitro-2,1,3-benzothiadiazole, has been designed to serve as an illustrative example to quantitatively evaluate the relative merits of halogen and chalcogen bonding in terms of charge density features. The compound displays two polymorphic modifications, one crystallizing in a non-centrosymmetric space group (Z' = 1) and the other in a centrosymmetric space group with two molecules in the asymmetric unit (Z' = 2). Topological analysis based on QTAIM clearly brings out the dominance of the chalcogen bond over the halogen bond along with an indication that halogen bonds are more directional compared to chalcogen bonds. The cohesive energies calculated with the absence of both strong and weak hydrogen bonds as well as stacking interaction are indicative of the stabilities associated with the polymorphic forms.
Resumo:
Synthesis of In2O3 octahedrons is carried out successfully by heating Indium metal pieces in air ambient. The sample is characterized by scanning electron microscopy (SEM), Energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD) and Raman spectroscopy. The as-prepared In2O3 octahedrons are highly crystalline and exhibit body centered cubic structure. Room temperature and temperature (293-453K) dependence photoluminescence reveals a deep levelbroad emission of yellowish-orange spectra centered around 605 nm. The emission is due to the presence of defect levels in the band gap of materials.