137 resultados para Multipass Rheometer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the development of improved performance test protocols by renowned researchers, there are still road networks which experience premature cracking and failure. One area of major concern in asphalt science and technology, especially in cold regions in Canada is thermal (low temperature) cracking. Usually right after winter periods, severe cracks are seen on poorly designed road networks. Quality assurance tests based on improved asphalt performance protocols have been implemented by government agencies to ensure that roads being constructed are at the required standard but asphalt binders that pass these quality assurance tests still crack prematurely. While it would be easy to question the competence of the quality assurance test protocols, it should be noted that performance tests which are being used and were repeated in this study, namely the extended bending beam rheometer (EBBR) test, double edge-notched tension test (DENT), dynamic shear rheometer (DSR) test and X-ray fluorescence (XRF) analysis have all been verified and proven to successfully predict asphalt pavement behaviour in the field. Hence this study looked to probe and test the quality and authenticity of the asphalt binders being used for road paving. This study covered thermal cracking and physical hardening phenomenon by comparing results from testing asphalt binder samples obtained from the storage ‘tank’ prior to paving (tank samples) and recovered samples for the same contracts with aim of explaining why asphalt binders that have passed quality assurance tests are still prone to fail prematurely. The study also attempted to find out if the short testing time and automated procedure of torsion bar experiments can replace the established but tedious procedure of the EBBR. In the end, it was discovered that significant differences in performance and composition exist between tank and recovered samples for the same contracts. Torsion bar experimental data also indicated some promise in predicting physical hardening.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this dissertation is the evaluation of the exploitability of corn cobs as natural additives for bio-based polymer matrices, in order to hone their properties while keeping the fundamental quality of being fully bio-derived. The first part of the project has the purpose of finding the best solvent and conditions to extract antioxidants and anti-degrading molecules from corn cobs, exploiting room and high-temperature processes, traditional and advanced extraction methods, as well as polar and nonpolar solvents. The extracts in their entirety are then analysed to evaluate their antioxidant content, in order to select the conditions able to maximise their anti-degrading properties. The second part of the project, instead, focuses on assessing chemical and physical properties of the best-behaving extract when inserted in a polymeric matrix. To achieve this, low-density polyethylene (LDPE) and poly (butylene succinate – co – adipate) (PBSA) are employed. These samples are obtained through extrusion and are subsequently characterised exploiting the DSC equipment and a sinusoidally oscillating rheometer. In addition, extruded polymeric matrices are subjected to thermal and photo ageing, in order to identify their behaviour after different forms of degradation and to assess their performances with respect to synthetically produced anti-degrading additives.