906 resultados para Multimedia walls
Resumo:
The study focuses on probabilistic assessment of the internal seismic stability of reinforced soil structures (RSS) subjected to earthquake loading in the framework of the pseudo-dynamic method. In the literature, the pseudo-static approach has been used to compute reliability indices against the tension and pullout failure modes, and the real dynamic nature of earthquake accelerations cannot be considered. The work presented in this paper makes use of the horizontal and vertical sinusoidal accelerations, amplification of vibrations, shear wave and primary wave velocities and time period. This approach is applied to quantify the influence of the backfill properties, geosynthetic reinforcement and characteristics of earthquake ground motions on reliability indices in relation to the tension and pullout failure modes. Seismic reliability indices at different levels of geosynthetic layers are determined for different magnitudes of seismic acceleration, soil amplification, shear wave and primary wave velocities. The results are compared with the pseudo-static method, and the significance of the present methodology for designing reinforced soil structures is discussed.
Resumo:
Retaining walls are one of the important structures in nearshore environment and are generally designed based on deterministic approaches. The present paper focuses on the reliability assessment of cantilever retaining walls with due consideration to the uncertainties in soil parameters. Reliability analysis quantifies the level of reliability associated with designs and the associated risk. It also gives the formalisation of a design situation that is normally recognised by experienced designers and provides a greater level of consistency in design. The results are also examined in terms of a simple cost function. The study shows that sliding mode is the critical failure mode and the consequent failure costs are also higher. The study also shows that provision of shear key results in improved reliability and reduction in expected costs.
Resumo:
Three-dimensional numerical study of natural convection in a vertical channel with flush-mounted discrete heaters on opposite conductive substrate walls is carried out in the present work. Detailed flow and heat transfer characteristics are presented for various Grashof numbers. The heat transfer effects on one wall by the presence of heaters on its opposite wall is examined. It is found that heat transfer rates on one wall are increased by the presence of heaters on its opposite wall. The thermal boundary layers on the opposite walls complement each other for enhanced heat transfer. The effects of spacing between the heated walls, spacings between heaters and substrate conductivity on flow and heat transfer are examined. Existence of optimum spacings between the heated walls for maximum heat transfer and mass flow are observed. It is found that the heat transfer and fluid flow do not follow the same optimum spacings. Mass flow rate reaches maximum value at a wall spacing greater than the spacing for maximum heat transfer. This is because the interaction of thermal boundary layers on individual walls ceases at a lower spacing before the velocity boundary layers separate each other. It is found that increased spacings between heaters reduce individual heater temperatures provided the heaters close to exit on both substrates avail sufficient substrate potions on the exit side. Insufficient substrate portions between the exit heaters and the exit cause abnormal local temperature rise in the exit heaters which are the hottest ones among all the heaters. Optimal heater spacings exist for minimum hottest heater temperature rise. Correlations are presented for dimensionless mass flow rate, temperature maximum, and average Nusselt number.
Resumo:
Three new nanoscopic trigonal prisms, (tmen)6Pd6(H2L)3](NO3)12 (1), (Meen)6Pd6(H2L)3](NO3)12 (2), and (2,2'-bipy)6Pd6(H2L)3](NO3)12 (3), have been synthesized in excellent yields through single-step metalligand-coordination-driven self-assembly using 5,10,15,20-tetrakis(3-pyridyl)porphyrin (H2L) as a donor and cis-blocked PdII 90 degrees acceptors. These complexes were fully characterized by spectroscopic studies and single-crystal X-ray diffraction. All of these barrels quantitatively bind ZnII ions in the N4 pockets of the porphyrin walls at room temperature. Their corresponding zinc-embedded complexes, (tmen)6Pd6(ZnL)3](NO3)12 (1?a), (Meen)6Pd6(ZnL)3](NO3)12 (2?a), and (2,2'-bipy)6Pd6(ZnL)3](NO3)12 (3?a), were synthesized under ambient conditions by the post-synthetic binding of ZnII ions into the H2N4 pockets of the porphyrin walls of these complexes. These zinc-embedded complexes were characterized by electronic absorption, fluorescence emission, 1H NMR spectroscopy, as well as elemental analysis. Complexes 13 exhibited considerable microporosity in their solid state. Complex 1 was an efficient adsorbent for nitrogen gas and EtOH, MeOH, and water vapors.
Resumo:
The two-component self-assembly of a 90 degrees PdII acceptor and a triimidazole donor led to the formation of a water-soluble semi-cylindrical cage with a hydrophobic cavity, which was separately crystallized with hydrophilic- and hydrophobic guests. The parent cage was found to catalyze the Knoevenagel condensation reaction of a series of aromatic mono-aldehydes with active methylene compounds, such as Meldrum's acid or 1,3-dimethylbarbituric acid. The confined hydrophobic nanospace within this cage was also used in the catalytic DielsAlder reactions of 9-hydroxymethylanthracene with N-phenylmaleimide or N-cyclohexylmaleimide.
Resumo:
Laminar forced convection of nanofluids in a vertical channel with symmetrically mounted rib heaters on surfaces of opposite walls is numerically studied. The fluid flow and heat transfer characteristics are examined for various Reynolds numbers and nanoparticles volume fractions of water-Al2O3 nanofluid. The flow exhibits various structures with varying Reynolds number. Even though the geometry and heating is symmetric with respect to a channel vertical mid-plane, asymmetric flow and heat transfer are found for Reynolds number greater than a critical value. Introduction of nanofluids in the base fluid delays the flow solution bifurcation point, and the critical Reynolds number increases with increasing nanoparticle volume fraction. A skin friction coefficient along the solid-fluid interfaces increases and decreases sharply along the bottom and top faces of the heaters, respectively, due to sudden acceleration and deceleration of the fluid at the respective faces. The skin friction coefficient, as well as Nusselt numbers in the channel, increase with increasing volume fraction of nanoparticles.
A dynamic bandwidth allocation scheme for interactive multimedia applications over cellular networks
Resumo:
Cellular networks played key role in enabling high level of bandwidth for users by employing traditional methods such as guaranteed QoS based on application category at radio access stratum level for various classes of QoSs. Also, the newer multimode phones (e.g., phones that support LTE (Long Term Evolution standard), UMTS, GSM, WIFI all at once) are capable to use multiple access methods simulta- neously and can perform seamless handover among various supported technologies to remain connected. With various types of applications (including interactive ones) running on these devices, which in turn have different QoS requirements, this work discusses as how QoS (measured in terms of user level response time, delay, jitter and transmission rate) can be achieved for interactive applications using dynamic bandwidth allocation schemes over cellular networks. In this work, we propose a dynamic bandwidth allocation scheme for interactive multimedia applications with/without background load in the cellular networks. The system has been simulated for many application types running in parallel and it has been observed that if interactive applications are to be provided with decent response time, a periodic overhauling of policy at admission control has to be done by taking into account history, criticality of applications. The results demonstrate that interactive appli- cations can be provided with good service if policy database at admission control is reviewed dynamically.
Resumo:
This paper describes the development of a numerical model for simulating the shaking table tests on wrap-faced reinforced soil retaining walls. Some of the physical model tests carried out on reinforced soil retaining walls subjected to dynamic excitation through uniaxial shaking tests are briefly discussed. Models of retaining walls are constructed in a perspex box with geotextile reinforcement using the wraparound technique with dry sand backfill and instrumented with displacement sensors, accelerometers, and soil pressure sensors. Results showed that the displacements decrease with the increase in number of reinforcement layers, whereas acceleration amplifications were not affected significantly. Numerical modeling of these shaking table tests is carried out using the Fast Lagrangian Analysis of Continua program. The numerical model is validated by comparing the results with experiments on physical models. Responses of wrap-faced walls with varying numbers of reinforcement layers are compared. Sensitivity analysis performed on the numerical models showed that the friction and dilation angle of backfill material and stiffness properties of the geotextile-soil interface are the most affecting parameters for the model response.
Resumo:
We describe here the rheological response of dense, slowly deforming granular materials to shear in a cylindrical Couette cell. All components of the stress on the outer cylinder are measured pointwise as a function of the depth, for different methods of construction of the bed that presumably lead to distinct fabrics. The static stress profiles for the different construction protocols are different, but a stress profile that is independent of construction history emerges when the granular column is sheared for sufficient time, in accord with the predictions of plasticity theories. However the qualitative features of the the stress profile under shear differs radically from the predictions of plasticity theories and data reported in earlier studies. We discuss a hypothesis for the anomalous stress profiles that was proposed recently by us, and the ways in which further experiments may to conducted to verify it.
Resumo:
The key requirements for enabling real-time remote healthcare service on a mobile platform, in the present day heterogeneous wireless access network environment, are uninterrupted and continuous access to the online patient vital medical data, monitor the physical condition of the patient through video streaming, and so on. For an application, this continuity has to be sufficiently transparent both from a performance perspective as well as a Quality of Experience (QoE) perspective. While mobility protocols (MIPv6, HIP, SCTP, DSMIP, PMIP, and SIP) strive to provide both and do so, limited or non-availability (deployment) of these protocols on provider networks and server side infrastructure has impeded adoption of mobility on end user platforms. Add to this, the cumbersome OS configuration procedures required to enable mobility protocol support on end user devices and the user's enthusiasm to add this support is lost. Considering the lack of proper mobility implementations that meet the remote healthcare requirements above, we propose SeaMo+ that comprises a light-weight application layer framework, termed as the Virtual Real-time Multimedia Service (VRMS) for mobile devices to provide an uninterrupted real-time multimedia information access to the mobile user. VRMS is easy to configure, platform independent, and does not require additional network infrastructure unlike other existing schemes. We illustrate the working of SeaMo+ in two realistic remote patient monitoring application scenarios.
Resumo:
Model free simulations are performed to study the effect of the presence of side wall in compressible mixing of two parallel dissimilar gaseous streams with significant temperature difference. The turbulence statistics shows the three dimensional nature of the flow with and without the presence of side walls. The presence of side wall neither makes the flow field two dimensional, nor suppresses three dimensional disturbances. However, the comparison of shear layer growth rate and wall pressures reveal a better match with the two dimensional simulation results. This better match is explained on the basis of formation of oblique structures due to the presence of side walls which also suppress the distribution of momentum in third direction making the pressures to be higher as compared with the case without side walls. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper optical code-division multiple-access (O-CDMA) packet network is considered, which offers inherent security in the access networks. The application of O-CDMA to multimedia transmission (voice, data, and video) is investigated. The simultaneous transmission of various services is achieved by assigning to each user unique multiple code signatures. Thus, by applying a parallel mapping technique, we achieve multi-rate services. A random access protocol is proposed, here, where all distinct codes are used, for packet transmission. The codes, Optical Orthogonal Code (OOC), or 1D codes and Wavelength/Time Single-Pulse-per-Row (W/T SPR), or 2D codes, are analyzed. These 1D and 2D codes with varied weight are used to differentiate the Quality of Service (QoS). The theoretical bit error probability corresponding to the quality of each service is established using 1D and 2D codes in the receiver noiseless case and compared. The results show that, using 2D codes QoS in multimedia transmission is better than using 1D codes.
Resumo:
Three-dimensional natural convection in a horizontal channel with an array of discrete flush-mounted heaters on one of its vertical walls is numerically studied. Effects of thermal conductivities of substrate and heaters and convection on outer sides of the channel walls on heat transfer are examined. The substrate affects heat transfer in a wider range of thermal conductivities than do the heaters. At lower heater thermal conductivities a higher heat portion is transferred by direct convection from the heaters to the adjacent coolant. However, higher substrate conductivity is associated with higher heat portion transferred through the substrate. The innermost heater column is found to become the hottest heater column due to the lower coolant accessibility. The heat transfer in the channel is strongly influenced by convection on the outer sides of the channel walls. Correlations are presented for dimensionless temperature maximum and average Nusselt number.
Resumo:
Load and resistance factor design (LRFD) approach for the design of reinforced soil walls is presented to produce designs with consistent and uniform levels of risk for the whole range of design applications. The evaluation of load and resistance factors for the reinforced soil walls based on reliability theory is presented. A first order reliability method (FORM) is used to determine appropriate ranges for the values of the load and resistance factors. Using pseudo-static limit equilibrium method, analysis is conducted to evaluate the external stability of reinforced soil walls subjected to earthquake loading. The potential failure mechanisms considered in the analysis are sliding failure, eccentricity failure of resultant force (or overturning failure) and bearing capacity failure. The proposed procedure includes the variability associated with reinforced backfill, retained backfill, foundation soil, horizontal seismic acceleration and surcharge load acting on the wall. Partial factors needed to maintain the stability against three modes of failure by targeting component reliability index of 3.0 are obtained for various values of coefficients of variation (COV) of friction angle of backfill and foundation soil, distributed dead load surcharge, cohesion of the foundation soil and horizontal seismic acceleration. A comparative study between LRFD and allowable stress design (ASD) is also presented with a design example. (C) 2014 Elsevier Ltd. All rights reserved.