959 resultados para Multi-modal Biometrics
Resumo:
Background Data and Objective: There is anecdotal evidence that low-level laser therapy (LLLT) may affect the development of muscular fatigue, minor muscle damage, and recovery after heavy exercises. Although manufacturers claim that cluster probes (LEDT) maybe more effective than single-diode lasers in clinical settings, there is a lack of head-to-head comparisons in controlled trials. This study was designed to compare the effect of single-diode LLLT and cluster LEDT before heavy exercise. Materials and Methods: This was a randomized, placebo-controlled, double-blind cross-over study. Young male volleyball players (n = 8) were enrolled and asked to perform three Wingate cycle tests after 4 x 30 sec LLLT or LEDT pretreatment of the rectus femoris muscle with either (1) an active LEDT cluster-probe (660/850 nm, 10/30mW), (2) a placebo cluster-probe with no output, and (3) a single-diode 810-nm 200-mW laser. Results: The active LEDT group had significantly decreased post-exercise creatine kinase (CK) levels (-18.88 +/- 41.48U/L), compared to the placebo cluster group (26.88 +/- 15.18U/L) (p < 0.05) and the active single-diode laser group (43.38 +/- 32.90U/L) (p<0.01). None of the pre-exercise LLLT or LEDT protocols enhanced performance on the Wingate tests or reduced post-exercise blood lactate levels. However, a non-significant tendency toward lower post-exercise blood lactate levels in the treated groups should be explored further. Conclusion: In this experimental set-up, only the active LEDT probe decreased post-exercise CK levels after the Wingate cycle test. Neither performance nor blood lactate levels were significantly affected by this protocol of pre-exercise LEDT or LLLT.
Resumo:
Context. The Abell 222 and 223 clusters are located at an average redshift z similar to 0.21 and are separated by 0.26 deg. Signatures of mergers have been previously found in these clusters, both in X-rays and at optical wavelengths, thus motivating our study. In X-rays, they are relatively bright, and Abell 223 shows a double structure. A filament has also been detected between the clusters both at optical and X-ray wavelengths. Aims. We analyse the optical properties of these two clusters based on deep imaging in two bands, derive their galaxy luminosity functions (GLFs) and correlate these properties with X-ray characteristics derived from XMM-Newton data. Methods. The optical part of our study is based on archive images obtained with the CFHT Megaprime/Megacam camera, covering a total region of about 1 deg(2), or 12.3 x 12.3 Mpc(2) at a redshift of 0.21. The X-ray analysis is based on archive XMM-Newton images. Results. The GLFs of Abell 222 in the g' and r' bands are well fit by a Schechter function; the GLF is steeper in r' than in g'. For Abell 223, the GLFs in both bands require a second component at bright magnitudes, added to a Schechter function; they are similar in both bands. The Serna & Gerbal method allows to separate well the two clusters. No obvious filamentary structures are detected at very large scales around the clusters, but a third cluster at the same redshift, Abell 209, is located at a projected distance of 19.2 Mpc. X-ray temperature and metallicity maps reveal that the temperature and metallicity of the X-ray gas are quite homogeneous in Abell 222, while they are very perturbed in Abell 223. Conclusions. The Abell 222/Abell 223 system is complex. The two clusters that form this structure present very different dynamical states. Abell 222 is a smaller, less massive and almost isothermal cluster. On the other hand, Abell 223 is more massive and has most probably been crossed by a subcluster on its way to the northeast. As a consequence, the temperature distribution is very inhomogeneous. Signs of recent interactions are also detected in the optical data where this cluster shows a ""perturbed"" GLF. In summary, the multiwavelength analyses of Abell 222 and Abell 223 are used to investigate the connection between the ICM and the cluster galaxy properties in an interacting system.
Resumo:
We review recent developments in manifold components and the introduction of light-emitting-diode technology in spectroscopic detection in order to evaluate the tremendous possibilities offered by multi-commutation for infield and in-situ measurements, based on the use of multi-pumping and low-voltage, portable batteries, which make possible a dramatic reduction in size, weight and power requirements of spectrometric devices. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Multi-pumping flow systems exploit pulsed flows delivered by Solenoid pumps. Their improved performance rely on the enhanced radial mass transport inherent to the pulsed flow, which is a consequence of the establishment of vortices thus a tendency towards turbulent mixing. This paper presents several evidences of turbulent mixing in relation to pulsed flows. such as recorded peak shape, establishment of fluidized beds, exploitation of flow reversal, implementation of relatively slow chemical reactions and/or heating of the reaction medium. In addition, Reynolds number associated with the GO period of a pulsed flow is estimated and photographic images of dispersing samples flowing under laminar regime and pulsed flow conditions are presented. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Recent advances in energy technology generation and new directions in electricity regulation have made distributed generation (DG) more widespread, with consequent significant impacts on the operational characteristics of distribution networks. For this reason, new methods for identifying such impacts are needed, together with research and development of new tools and resources to maintain and facilitate continued expansion towards DG. This paper presents a study aimed at determining appropriate DG sites for distribution systems. The main considerations which determine DG sites are also presented, together with an account of the advantages gained from correct DG placement. The paper intends to define some quantitative and qualitative parameters evaluated by Digsilent (R), GARP3 (R) and DSA-GD software. A multi-objective approach based on the Bellman-Zadeh algorithm and fuzzy logic is used to determine appropriate DG sites. The study also aims to find acceptable DG locations both for distribution system feeders, as well as for nodes inside a given feeder. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Modal filters may be obtained by a properly designed weighted sum of the output signals of an array of sensors distributed on the host structure. Although several research groups have been interested in techniques for designing and implementing modal filters based on a given array of sensors, the effect of the array topology on the effectiveness of the modal filter has received much less attention. In particular, it is known that some parameters, such as size, shape and location of a sensor, are very important in determining the observability of a vibration mode. Hence, this paper presents a methodology for the topological optimization of an array of sensors in order to maximize the effectiveness of a set of selected modal filters. This is done using a genetic algorithm optimization technique for the selection of 12 piezoceramic sensors from an array of 36 piezoceramic sensors regularly distributed on an aluminum plate, which maximize the filtering performance, over a given frequency range, of a set of modal filters, each one aiming to isolate one of the first vibration modes. The vectors of the weighting coefficients for each modal filter are evaluated using QR decomposition of the complex frequency response function matrix. Results show that the array topology is not very important for lower frequencies but it greatly affects the filter effectiveness for higher frequencies. Therefore, it is possible to improve the effectiveness and frequency range of a set of modal filters by optimizing the topology of an array of sensors. Indeed, using 12 properly located piezoceramic sensors bonded on an aluminum plate it is shown that the frequency range of a set of modal filters may be enlarged by 25-50%.
Resumo:
This paper deals with analysis of multiple random crack propagation in two-dimensional domains using the boundary element method (BEM). BEM is known to be a robust and accurate numerical technique for analysing this type of problem. The formulation adopted in this work is based on the dual BEM, for which singular and hyper-singular integral equations are used. We propose an iterative scheme to predict the crack growth path and the crack length increment at each time step. The proposed scheme able us to simulate localisation and coalescence phenomena, which is the main contribution of this paper. Considering the fracture mechanics analysis, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of simple and multi-fractured domains, loaded up to the rupture, are considered to illustrate the applicability of the proposed scheme. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Due to manufacturing or damage process, brittle materials present a large number of micro-cracks which are randomly distributed. The lifetime of these materials is governed by crack propagation under the applied mechanical and thermal loadings. In order to deal with these kinds of materials, the present work develops a boundary element method (BEM) model allowing for the analysis of multiple random crack propagation in plane structures. The adopted formulation is based on the dual BEM, for which singular and hyper-singular integral equations are used. An iterative scheme to predict the crack growth path and crack length increment is proposed. This scheme enables us to simulate the localization and coalescence phenomena, which are the main contribution of this paper. Considering the fracture mechanics approach, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of multi-fractured domains, loaded up to rupture, are considered to illustrate the applicability of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The main objective of this work is to present an alternative boundary element method (BEM) formulation for the static analysis of three-dimensional non-homogeneous isotropic solids. These problems can be solved using the classical boundary element formulation, analyzing each subregion separately and then joining them together by introducing equilibrium and displacements compatibility. Establishing relations between the displacement fundamental solutions of the different domains, the alternative technique proposed in this paper allows analyzing all the domains as one unique solid, not requiring equilibrium or compatibility equations. This formulation also leads to a smaller system of equations when compared to the usual subregion technique, and the results obtained are even more accurate. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A nonlinear finite element model was developed to simulate the nonlinear response of three-leaf masonry specimens, which were subjected to laboratory tests with the aim of investigating the mechanical behaviour of multiple-leaf stone masonry walls up to failure. The specimens consisted of two external leaves made of stone bricks and mortar joints, and an internal leaf in mortar and stone aggregate. Different loading conditions, typologies of the collar joints, and stone types were taken into account. The constitutive law implemented in the model is characterized by a damage tensor, which allows the damage-induced anisotropy accompanying the cracking process to be described. To follow the post-peak behaviour of the specimens with sufficient accuracy it was necessary to make the damage model non-local, to avoid mesh-dependency effects related to the strain-softening behaviour of the material. Comparisons between the predicted and measured failure loads are quite satisfactory in most of the studied cases. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper investigates the validity of a simplified equivalent reservoir representation of a multi-reservoir hydroelectric system for modelling its optimal operation for power maximization. This simplification, proposed by Arvanitidis and Rosing (IEEE Trans Power Appar Syst 89(2):319-325, 1970), imputes a potential energy equivalent reservoir with energy inflows and outflows. The hydroelectric system is also modelled for power maximization considering individual reservoir characteristics without simplifications. Both optimization models employed MINOS package for solution of the non-linear programming problems. A comparison between total optimized power generation over the planning horizon by the two methods shows that the equivalent reservoir is capable of producing satisfactory power estimates with less than 6% underestimation. The generation and total reservoir storage trajectories along the planning horizon obtained by equivalent reservoir method, however, presented significant discrepancies as compared to those found in the detailed modelling. This study is motivated by the fact that Brazilian generation system operations are based on the equivalent reservoir method as part of the power dispatch procedures. The potential energy equivalent reservoir is an alternative which eliminates problems with the dimensionality of state variables in a dynamic programming model.
Resumo:
The approach presented in this paper consists of an energy-based field-circuit coupling in combination with multi-physics simulation of the acoustic radiation of electrical machines. The proposed method is applied to a special switched reluctance motor with asymmetric pole geometry to improve the start-up torque. The pole shape has been optimized, subject to low torque ripple, in a previous study. The proposed approach here is used to analyze the impact of the optimization on the overall acoustic behavior. The field-circuit coupling is based on a temporary lumped-parameter model of the magnetic part incorporated into a circuit simulation based on the modified nodal analysis. The harmonic force excitation is calculated by means of stress tensor computation, and it is transformed to a mechanical mesh by mapping techniques. The structural dynamic problem is solved in the frequency domain using a finite-element modal analysis and superposition. The radiation characteristic is obtained from boundary element acoustic simulation. Simulation results of both rotor types are compared, and measurements of the drive are presented.
Resumo:
This paper addresses the development of several alternative novel hybrid/multi-field variational formulations of the geometrically exact three-dimensional elastostatic beam boundary-value problem. In the framework of the complementary energy-based formulations, a Legendre transformation is used to introduce the complementary energy density in the variational statements as a function of stresses only. The corresponding variational principles are shown to feature stationarity within the framework of the boundary-value problem. Both weak and linearized weak forms of the principles are presented. The main features of the principles are highlighted, giving special emphasis to their relationships from both theoretical and computational standpoints. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The exact vibration modes and natural frequencies of planar structures and mechanisms, comprised Euler-Bernoulli beams, are obtained by solving a transcendental. nonlinear, eigenvalue problem stated by the dynamic stiffness matrix (DSM). To solve this kind of problem, the most employed technique is the Wittrick-Williams algorithm, developed in the early seventies. By formulating a new type of eigenvalue problem, which preserves the internal degrees-of-freedom for all members in the model, the present study offers an alternative to the use of this algorithm. The new proposed eigenvalue problem presents no poles, so the roots of the problem can be found by any suitable iterative numerical method. By avoiding a standard formulation for the DSM, the local mode shapes are directly calculated and any extension to the beam theory can be easily incorporated. It is shown that the method here adopted leads to exact solutions, as confirmed by various examples. Extensions of the formulation are also given, where rotary inertia, end release, skewed edges and rigid offsets are all included. (C) 2008 Elsevier Ltd. All rights reserved.