867 resultados para Motor Cortical Areas


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present study was to test the reproducibility, sensitivity, and specificity of cone-beam computed tomography (CBCT) in detecting incipient furcation involvement. Fifteen macerated pig mandibles, with intact second molar teeth and preserved adjacent cortical areas, were used. Simulated lesions were created in the furcation region of these teeth by applying 70% perchloric acid in up to four possible buccal/lingual sites in the right/left sides of each mandible. The mandibles were then submitted to a CBCT scan. Two blinded and calibrated experienced oral and maxillofacial radiologists interpreted the exams. Furcation involvement was also assessed in the regions without simulated lesions. CBCT showed high levels of accuracy, ranging from 78% to 88%. The variations in Kappa values for intra- and inter-observer agreement (0.41-0.59) were considered moderate. CBCT can be considered a reliable and accurate method for detecting incipient furcation involvement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hallucinogenic brew Ayahuasca, a rich source of serotonergic agonists and reuptake inhibitors, has been used for ages by Amazonian populations during religious ceremonies. Among all perceptual changes induced by Ayahuasca, the most remarkable are vivid seeings. During such seeings, users report potent imagery. Using functional magnetic resonance imaging during a closed-eyes imagery task, we found that Ayahuasca produces a robust increase in the activation of several occipital, temporal, and frontal areas. In the primary visual area, the effect was comparable in magnitude to the activation levels of natural image with the eyes open. Importantly, this effect was specifically correlated with the occurrence of individual perceptual changes measured by psychiatric scales. The activity of cortical areas BA30 and BA37, known to be involved with episodic memory and the processing of contextual associations, was also potentiated by Ayahuasca intake during imagery. Finally, we detected a positive modulation by Ayahuasca of BA 10, a frontal area involved with intentional prospective imagination, working memory and the processing of information from internal sources. Therefore, our results indicate that Ayahuasca seeings stem from the activation of an extensive network generally involved with vision, memory, and intention. By boosting the intensity of recalled images to the same level of natural image, Ayahuasca lends a status of reality to inner experiences. It is therefore understandable why Ayahuasca was culturally selected over many centuries by rain forest shamans to facilitate mystical revelations of visual nature. Hum Brain Mapp, 2012. (c) 2011 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analytically study the input-output properties of a neuron whose active dendritic tree, modeled as a Cayley tree of excitable elements, is subjected to Poisson stimulus. Both single-site and two-site mean-field approximations incorrectly predict a nonequilibrium phase transition which is not allowed in the model. We propose an excitable-wave mean-field approximation which shows good agreement with previously published simulation results [Gollo et al., PLoS Comput. Biol. 5, e1000402 (2009)] and accounts for finite-size effects. We also discuss the relevance of our results to experiments in neuroscience, emphasizing the role of active dendrites in the enhancement of dynamic range and in gain control modulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early malnutrition refers to inadequate nutrition during the critical period of nervous system development followed by nutritional recovery, resulting in a short stature according to age but normal weight according to short stature. We measured the effects of early malnutrition on contrast sensitivity (CS) to concentric circular gratings in 18 children of both sexes, aged 8 to 11 years (mean = 9.2 years, standard deviation = .99 years). Nine of the children were eutrophic (E group), and nine experienced early malnutrition (EM group) based on state healthcare records and Waterlow's anthropometric parameters. Contrast sensitivity to four spatial frequencies (.25, 1.0, 2.0, and 8.0 cycles per degree [cpd]) was measured using a temporal two-alternative forced-choice psychophysical method with mean luminance of 40.1 cd/m². Statistical analyses showed significant differences between groups and a group × frequency interaction. EM group was significantly less sensitive than the E group to the 8.0 cpd frequency and needed 1.49-times more contrast to detect the gratings. These results suggest that early malnutrition impairs CS to high-spatial-frequency concentric circular gratings in children. Therefore, early malnutrition, which is known to affect primary visual cortical areas, may also affect higher visual cortical areas such as V4 and the inferotemporal cortex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ability of integrating into a unified percept sensory inputs deriving from different sensory modalities, but related to the same external event, is called multisensory integration and might represent an efficient mechanism of sensory compensation when a sensory modality is damaged by a cortical lesion. This hypothesis has been discussed in the present dissertation. Experiment 1 explored the role of superior colliculus (SC) in multisensory integration, testing patients with collicular lesions, patients with subcortical lesions not involving the SC and healthy control subjects in a multisensory task. The results revealed that patients with collicular lesions, paralleling the evidence of animal studies, demonstrated a loss of multisensory enhancement, in contrast with control subjects, providing the first lesional evidence in humans of the essential role of SC in mediating audio-visual integration. Experiment 2 investigated the role of cortex in mediating multisensory integrative effects, inducing virtual lesions by inhibitory theta-burst stimulation on temporo-parietal cortex, occipital cortex and posterior parietal cortex, demonstrating that only temporo-parietal cortex was causally involved in modulating the integration of audio-visual stimuli at the same spatial location. Given the involvement of the retino-colliculo-extrastriate pathway in mediating audio-visual integration, the functional sparing of this circuit in hemianopic patients is extremely relevant in the perspective of a multisensory-based approach to the recovery of unisensory defects. Experiment 3 demonstrated the spared functional activity of this circuit in a group of hemianopic patients, revealing the presence of implicit recognition of the fearful content of unseen visual stimuli (i.e. affective blindsight), an ability mediated by the retino-colliculo-extrastriate pathway and its connections with amygdala. Finally, Experiment 4 provided evidence that a systematic audio-visual stimulation is effective in inducing long-lasting clinical improvements in patients with visual field defect and revealed that the activity of the spared retino-colliculo-extrastriate pathway is responsible of the observed clinical amelioration, as suggested by the greater improvement observed in patients with cortical lesions limited to the occipital cortex, compared to patients with lesions extending to other cortical areas, found in tasks high demanding in terms of spatial orienting. Overall, the present results indicated that multisensory integration is mediated by the retino-colliculo-extrastriate pathway and that a systematic audio-visual stimulation, activating this spared neural circuit, is able to affect orientation towards the blind field in hemianopic patients and, therefore, might constitute an effective and innovative approach for the rehabilitation of unisensory visual impairments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The vocal imitation of pitch by singing requires one to plan laryngeal movements on the basis of anticipated target pitch events. This process may rely on auditory imagery, which has been shown to activate motor planning areas. As such, we hypothesized that poor-pitch singing, although not typically associated with deficient pitch perception, may be associated with deficient auditory imagery. Participants vocally imitated simple pitch sequences by singing, discriminated pitch pairs on the basis of pitch height, and completed an auditory imagery self-report questionnaire (the Bucknell Auditory Imagery Scale). The percentage of trials participants sung in tune correlated significantly with self-reports of vividness for auditory imagery, although not with the ability to control auditory imagery. Pitch discrimination was not predicted by auditory imagery scores. The results thus support a link between auditory imagery and vocal imitation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of low-level stimulus-driven control in the guidance of overt visual attention has been difficult to establish because low- and high-level visual content are spatially correlated within natural visual stimuli. Here we show that impairment of parietal cortical areas, either permanently by a lesion or reversibly by repetitive transcranial magnetic stimulation (rTMS), leads to fixation of locations with higher values of low-level features as compared to control subjects or in a no-rTMS condition. Moreover, this unmasking of stimulus-driven control crucially depends on the intrahemispheric balance between top-down and bottom-up cortical areas. This result suggests that although in normal behavior high-level features might exert a strong influence, low-level features do contribute to guide visual selection during the exploration of complex natural stimuli.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: The prevalence and characteristics of sleep-wake disturbances in sporadic Creutzfeldt-Jakob disease (sCJD) are poorly understood. METHODS: Seven consecutive patients with definite sCJD underwent a systematic assessment of sleep-wake disturbances, including clinical history, video-polysomnography, and actigraphy. Extent and distribution of neurodegeneration was estimated by brain autopsy in six patients. Western blot analyses enabling classification and quantification of the protease-resistant isoform of the prion protein, PrPSc, in thalamus and occipital cortex was available in four patients. RESULTS: Sleep-wake symptoms were observed in all patients, and were prominent in four of them. All patients had severe sleep EEG abnormalities with loss of sleep spindles, very low sleep efficiency, and virtual absence of REM sleep. The correlation between different methods to assess sleep-wake functions (history, polysomnography, actigraphy, videography) was generally poor. Brain autopsy revealed prominent changes in cortical areas, but only mild changes in the thalamus. No mutation of the PRNP gene was found. CONCLUSIONS: This study demonstrates in sporadic Creutzfeldt-Jakob disease, first, the existence of sleep-wake disturbances similar to those reported in fatal familial insomnia in the absence of prominent and isolated thalamic neuronal loss, and second, the need of a multimodal approach for the unambiguous assessment of sleep-wake functions in these patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: There is a need to develop strategies to enhance the beneficial effects of motor training, including use-dependent plasticity (UDP), in neurorehabilitation. Peripheral nerve stimulation (PNS) modulates motor cortical excitability in healthy humans and could influence training effects in stroke patients. METHODS: We compared the ability of PNS applied to the (1) arm, (2) leg, and (3) idle time to influence training effects in the paretic hand in 7 chronic stroke patients. The end point measure was the magnitude of UDP. RESULTS: UDP was more prominent with arm stimulation (increased by 22.8%) than with idle time (by 2.9%) or leg stimulation (by 6.4%). CONCLUSIONS: PNS applied to the paretic limb paired with motor training enhances training effects on cortical plasticity in stroke patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The neonatal rat brain is vulnerable to neuronal apoptosis induced by antiepileptic drugs (AEDs), especially when given in combination. This study evaluated lamotrigine alone or in combination with phenobarbital, phenytoin, or the glutamate antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801) for a proapoptotic action in the developing rat brain. Cell death was assessed in brain regions (striatum, thalamus, and cortical areas) of rat pups (postnatal day 8) by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, 24 h after acute drug treatment. Lamotrigine alone did not increase neuronal apoptosis when given in doses up to 50 mg/kg; a significant increase in cell death occurred after 100 mg/kg. Combination of 20 mg/kg lamotrigine with 0.5 mg/kg MK-801 or 75 mg/kg phenobarbital resulted in a significant increase in TUNEL-positive cells, compared with MK-801 or phenobarbital treatment alone. A similar enhancement of phenytoin-induced cell death occurred after 30 mg/kg lamotrigine. In contrast, 20 mg/kg lamotrigine significantly attenuated phenytoin-induced cell death. Lamotrigine at 10 mg/kg was without effect on apoptosis induced by phenytoin. Although the functional and clinical implications of AED-induced developmental neuronal apoptosis remain to be elucidated, our finding that lamotrigine alone is devoid of this effect makes this drug attractive as monotherapy for the treatment of women during pregnancy, and for preterm or neonatal infants. However, because AEDs are often introduced as add-on medication, careful selection of drug combinations and doses may be required to avoid developmental neurotoxicity when lamotrigine is used in polytherapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using functional magnetic resonance imaging during a verbal memory task, we investigated correlations of signal fluctuations within the hippocampus and ipsilateral frontal as well as temporal areas in temporal lobe epilepsy patients. Declarative memory abilities were additionally examined before and after temporal lobe epilepsy surgery. A significant difference exists in functional connectivity between patients whose mnemonic functions deteriorated and those who remained stable or improved. Univariate analyses showed significantly higher preoperative coupling between the hippocampus and Brodmann area 22 for the group that decreased in verbal learning. We suggest greater coupling to reflect higher functional network integrity. Postoperatively reduced learning ability in patients with higher preoperative coupling underlines the importance of hippocampal interaction with cortical areas for successful memory formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE: The voluntary control of micturition is believed to be integrated by complex interactions among the brainstem, subcortical areas and cortical areas. Several brain imaging studies using positron emission tomography (PET) have demonstrated that frontal brain areas, the limbic system, the pons and the premotor cortical areas were involved. However, the cortical and subcortical brain areas have not yet been precisely identified and their exact function is not yet completely understood. MATERIALS AND METHODS: This study used functional magnetic resonance imaging (fMRI) to compare brain activity during passive filling and emptying of the bladder. A cathetherism of the bladder was performed in seven healthy subjects (one man and six right-handed women). During scanning, the bladder was alternatively filled and emptied at a constant rate with bladder rincing solution. RESULTS: Comparison between passive filling of the bladder and emptying of the bladder showed an increased brain activity in the right inferior frontal gyrus, cerebellum, symmetrically in the operculum and mesial frontal. Subcortical areas were not evaluated. CONCLUSIONS: Our results suggest that several cortical brain areas are involved in the regulation of micturition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

What happens in the brain when we reach or exceed our capacity limits? Are there individual differences for performance at capacity limits? We used functional magnetic resonance imaging (fMRI) to investigate the impact of increases in processing demand on selected cortical areas when participants performed a parametrically varied and challenging dual task. Low-performing participants respond with large and load-dependent activation increases in many cortical areas when exposed to excessive task requirements, accompanied by decreasing performance. It seems that these participants recruit additional attentional and strategy-related resources with increasing difficulty, which are either not relevant or even detrimental to performance. In contrast, the brains of the high-performing participants "keep cool" in terms of activation changes, despite continuous correct performance, reflecting different and more efficient processing. These findings shed light on the differential implications of performance on activation patterns and underline the importance of the interindividual-differences approach in neuroimaging research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To quantify visual discrimination, space-motion, and object-form perception in patients with Parkinson disease dementia (PDD), dementia with Lewy bodies (DLB), and Alzheimer disease (AD). METHODS The authors used a cross-sectional study to compare three demented groups matched for overall dementia severity (PDD: n = 24; DLB: n = 20; AD: n = 23) and two age-, sex-, and education-matched control groups (PD: n = 24, normal controls [NC]: n = 25). RESULTS Visual perception was globally more impaired in PDD than in nondemented controls (NC, PD), but was not different from DLB. Compared to AD, PDD patients tended to perform worse in all perceptual scores. Visual perception of patients with PDD/DLB and visual hallucinations was significantly worse than in patients without hallucinations. CONCLUSIONS Parkinson disease dementia (PDD) is associated with profound visuoperceptual impairments similar to dementia with Lewy bodies (DLB) but different from Alzheimer disease. These findings are consistent with previous neuroimaging studies reporting hypoactivity in cortical areas involved in visual processing in PDD and DLB.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Comprehending speech is one of the most important human behaviors, but we are only beginning to understand how the brain accomplishes this difficult task. One key to speech perception seems to be that the brain integrates the independent sources of information available in the auditory and visual modalities in a process known as multisensory integration. This allows speech perception to be accurate, even in environments in which one modality or the other is ambiguous in the context of noise. Previous electrophysiological and functional magnetic resonance imaging (fMRI) experiments have implicated the posterior superior temporal sulcus (STS) in auditory-visual integration of both speech and non-speech stimuli. While evidence from prior imaging studies have found increases in STS activity for audiovisual speech compared with unisensory auditory or visual speech, these studies do not provide a clear mechanism as to how the STS communicates with early sensory areas to integrate the two streams of information into a coherent audiovisual percept. Furthermore, it is currently unknown if the activity within the STS is directly correlated with strength of audiovisual perception. In order to better understand the cortical mechanisms that underlie audiovisual speech perception, we first studied the STS activity and connectivity during the perception of speech with auditory and visual components of varying intelligibility. By studying fMRI activity during these noisy audiovisual speech stimuli, we found that STS connectivity with auditory and visual cortical areas mirrored perception; when the information from one modality is unreliable and noisy, the STS interacts less with the cortex processing that modality and more with the cortex processing the reliable information. We next characterized the role of STS activity during a striking audiovisual speech illusion, the McGurk effect, to determine if activity within the STS predicts how strongly a person integrates auditory and visual speech information. Subjects with greater susceptibility to the McGurk effect exhibited stronger fMRI activation of the STS during perception of McGurk syllables, implying a direct correlation between strength of audiovisual integration of speech and activity within an the multisensory STS.