967 resultados para Morse oscillator
Resumo:
In 1997, the UK implemented the worlds first commercial digital terrestrial television system. Under the ETS 300 744 standard, the chosen modulation method, COFDM, is assumed to be multipath resilient. Previous work has shown that this is not necessarily the case. It has been shown that the local oscillator required for demodulation from intermediate-frequency to baseband must be very accurate. This paper shows that under multipath conditions, standard methods for obtaining local oscillator phase lock may not be adequate. This paper demonstrates a set of algorithms designed for use with a simple local oscillator circuit which will allow correction for local oscillator phase offset to maintain a low bit error rate with multipath present.
Resumo:
Under multipath conditions, standard Video Intermediate Frequency (VIF) detectors generate a local oscillator phase error and consequently produce a dispersed non-ideal detected video signal due to the presence of additional IF carriers. The dispersed video causes problems when attempting to identify and remove the multipath interference, or ghosts, by the use of Digital Signal Processing and digital filtering. A digital phase lock system is presented which derives the correct phase for synchronous detection in the presence of multipath by using correlation information that has already been calculated as part of the deghosting process. As a result, the video deghoster system is made simpler, faster and more economical.
Resumo:
We construct a two-variable model which describes the interaction between local baroclinicity and eddy heat flux in order to understand aspects of the variance in storm tracks. It is a heuristic model for diabatically forced baroclinic instability close to baroclinic neutrality. The two-variable model has the structure of a nonlinear oscillator. It exhibits some realistic properties of observed storm track variability, most notably the intermittent nature of eddy activity. This suggests that apparent threshold behaviour can be more accurately and succinctly described by a simple nonlinearity. An analogy is drawn with triggering of convective events.
Resumo:
Purpose: The aim of this study was to evaluate, through fluorescence analysis, the effect that different interimplant distances, after prosthetic restoration, will have on bone remodeling in submerged and nonsubmerged implants restored with a ""platform switch."" Materials and Methods: Fifty-six Ankylos implants were placed 1.5 mm subcrestally in seven dogs. The implants were placed so that two fixed prostheses, with three interimplant contacts separated by 1-mm, 2-mm, and 3-mm distances, could be fabricated for each side of the mandible. The sides and the positions of the groups were selected randomly. To better evaluate bone remodeling, calcein green was injected 3 days before placement of the prostheses at 12 weeks postimplantation. At 3 days before sacrifice (8 weeks postloading), alizarin red was injected. The amounts of remodeled bone within the different interimplant areas were compared statistically before and after loading in submerged and nonsubmerged implants. Results: Statistically significant differences existed in the percentage of remodeled bone seen in the different regions. Mean percentages of remodeled bone in the submerged and nonsubmerged groups, respectively, were as follows: for the 1-mm distance, 23.0% +/- 0.05% and 23.1% +/- 0.03% preloading and 27.0% +/- 0.03% and 25.2% +/- 0.04% postloading, for the 2-mm distance, 18.2% +/- 0.05% and 18.1% +/- 0.04% preloading and 21.3% +/- 0.07% and 19.9% +/- 0.03% postloading, for the 3-mm distance, 18.3% +/- 0.03% and 18.3% +/- 0.03% preloading and 18.8% +/- 0.04% and 19.8% +/- 0.04% postloading, for distal-extension regions, 16.6% +/- 0.02% and 17.4% +/- 0.04% preloading and 17.0% +/- 0.04% and 18.4% +/- 0.04% postloading. Conclusions: Based upon this animal study, loading increases bone formation for submerged or nonsubmerged implants, and the interimplant distance of 1 mm appears to result in more pronounced bone remodeling than the 2-mm or 3-mm distances in implants with a ""platform switch."" INT J ORAL MAXILLOFAC IMPLANTS 2009;24:257-266
Resumo:
We use an inequality due to Bochnak and Lojasiewicz, which follows from the Curve Selection Lemma of real algebraic geometry in order to prove that, given a C(r) function f : U subset of R(m) -> R, we have lim(y -> xy is an element of crit(f)) vertical bar f(y) - f(x)vertical bar/vertical bar y - x vertical bar(r) = 0, for all x is an element of crit(f)` boolean AND U, where crit( f) = {x is an element of U vertical bar df ( x) = 0}. This shows that the so-called Morse decomposition of the critical set, used in the classical proof of the Morse-Sard theorem, is not necessary: the conclusion of the Morse decomposition lemma holds for the whole critical set. We use this result to give a simple proof of the classical Morse-Sard theorem ( with sharp differentiability assumptions).
Resumo:
We generalize results in Cruz and de Rezende (1999) [7] by completely describing how the Beth numbers of the boundary of an orientable manifold vary after attaching a handle, when the homology coefficients are in Z, Q, R or Z/pZ with p prime. First we apply this result to the Conley index theory of Lyapunov graphs. Next we consider the Ogasa invariant associated with handle decompositions of manifolds. We make use of the above results in order to obtain upper bounds for the Ogasa invariant of product manifolds. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Object selection refers to the mechanism of extracting objects of interest while ignoring other objects and background in a given visual scene. It is a fundamental issue for many computer vision and image analysis techniques and it is still a challenging task to artificial Visual systems. Chaotic phase synchronization takes place in cases involving almost identical dynamical systems and it means that the phase difference between the systems is kept bounded over the time, while their amplitudes remain chaotic and may be uncorrelated. Instead of complete synchronization, phase synchronization is believed to be a mechanism for neural integration in brain. In this paper, an object selection model is proposed. Oscillators in the network representing the salient object in a given scene are phase synchronized, while no phase synchronization occurs for background objects. In this way, the salient object can be extracted. In this model, a shift mechanism is also introduced to change attention from one object to another. Computer simulations show that the model produces some results similar to those observed in natural vision systems.
Resumo:
In the bi-dimensional parameter space of an impact-pair system, shrimp-shaped periodic windows are embedded in chaotic regions. We show that a weak periodic forcing generates new periodic windows near the unperturbed one with its shape and periodicity. Thus, the new periodic windows are parameter range extensions for which the controlled periodic oscillations substitute the chaotic oscillations. We identify periodic and chaotic attractors by their largest Lyapunov exponents. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We return to the description of the damped harmonic oscillator with an assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model proposed by one of the authors. We argue the latter has better high energy behavior and is connected to existing open-systems approaches. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Semi-empirical weighted oscillator strengths (gf) and lifetimes presented in this work for all experimentally known electric dipole P XII spectral lines and energy levels were computed within a multiconfiguration Hartree-Fock relativistic approach. In this calculation, the electrostatic parameters were optimized by a least-squares procedure in order to improve the adjustment to experimental energy levels. The method produces lifetime and gf values that are in agreement with intensity observations used for the interpretation of spectrograms of solar and laboratory plasmas.
Resumo:
We consider a family of variational problems on a Hilbert manifold parameterized by an open subset of a Banach manifold, and we discuss the genericity of the nondegeneracy condition for the critical points. Using classical techniques, we prove an abstract genericity result that employs the infinite dimensional Sard-Smale theorem, along the lines of an analogous result of B. White [29]. Applications are given by proving the genericity of metrics without degenerate geodesics between fixed endpoints in general (non compact) semi-Riemannian manifolds, in orthogonally split semi-Riemannian manifolds and in globally hyperbolic Lorentzian manifolds. We discuss the genericity property also in stationary Lorentzian manifolds.
Resumo:
We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Given a Lorentzian manifold (M,g), a geodesic gamma in M and a timelike Jacobi field Y along gamma, we introduce a special class of instants along gamma that we call Y-pseudo conjugate (or focal relatively to some initial orthogonal submanifold). We prove that the Y-pseudo conjugate instants form a finite set, and their number equals the Morse index of (a suitable restriction of) the index form. This gives a Riemannian-like Morse index theorem. As special cases of the theory, we will consider geodesics in stationary and static Lorentzian manifolds, where the Jacobi field Y is obtained as the restriction of a globally defined timelike Killing vector field.
Resumo:
The batch-operated bromate/phosphate/acetone/dual catalyst system was studied at four temperatures between 5 and 35 degrees C. The dynamics was simultaneously followed by potential measurements with platinum and bromide selective electrodes, and spectroscopically at two different wavelengths. By simultaneously recording these four time series it was possible to characterize the dynamics of the sequential oscillations that evolve in time. The existence of three sequential oscillatory patterns at each temperature allowed estimating the activation energies in each case. Along with the activation energy of the induction period, it was possible to trace the time evolution of the overall activation energy at four different stages as the reaction proceeds. The study was carried out for two different sets of initial concentrations and it was observed that the overall activation energy increases as reactants turn into products. This finding was propounded as a result of the decrease in the driving force, or the system`s affinity, of the catalytic oxidative bromination of acetone with acidic bromate, as the closed system evolves toward the thermodynamic equilibrium.
Resumo:
In this paper, we introduce the concept of dynamic Morse decomposition for an action of a semigroup of homeomorphisms. Conley has shown in [5, Sec. 7] that the concepts of Morse decomposition and dynamic Morse decompositions are equivalent for flows in metric spaces. Here, we show that a Morse decomposition for an action of a semigroup of homeomorphisms of a compact topological space is a dynamic Morse decomposition. We also define Morse decompositions and dynamic Morse decompositions for control systems on manifolds. Under certain condition, we show that the concept of dynamic Morse decomposition for control system is equivalent to the concept of Morse decomposition.