943 resultados para Monte-Carlo simulation, Rod-coil block copolymer, Tetrapod polymer mixture
Resumo:
We present results of the reconstruction of a saccharose-based activated carbon (CS1000a) using hybrid reverse Monte Carlo (HRMC) simulation, recently proposed by Opletal et al. [1]. Interaction between carbon atoms in the simulation is modeled by an environment dependent interaction potential (EDIP) [2,3]. The reconstructed structure shows predominance of sp(2) over sp bonding, while a significant proportion of sp(3) hybrid bonding is also observed. We also calculated a ring distribution and geometrical pore size distribution of the model developed. The latter is compared with that obtained from argon adsorption at 87 K using our recently proposed characterization procedure [4], the finite wall thickness (FWT) model. Further, we determine self-diffusivities of argon and nitrogen in the constructed carbon as functions of loading. It is found that while there is a maximum in the diffusivity with respect to loading, as previously observed by Pikunic et al. [5], diffusivities in the present work are 10 times larger than those obtained in the prior work, consistent with the larger pore size as well as higher porosity of the activated saccharose carbon studied here.
Resumo:
Monte Carlo track structures (MCTS) simulations have been recognized as useful tools for radiobiological modeling. However, the authors noticed several issues regarding the consistency of reported data. Therefore, in this work, they analyze the impact of various user defined parameters on simulated direct DNA damage yields. In addition, they draw attention to discrepancies in published literature in DNA strand break (SB) yields and selected methodologies. The MCTS code Geant4-DNA was used to compare radial dose profiles in a nanometer-scale region of interest (ROI) for photon sources of varying sizes and energies. Then, electron tracks of 0.28 keV-220 keV were superimposed on a geometric DNA model composed of 2.7 × 10(6) nucleosomes, and SBs were simulated according to four definitions based on energy deposits or energy transfers in DNA strand targets compared to a threshold energy ETH. The SB frequencies and complexities in nucleosomes as a function of incident electron energies were obtained. SBs were classified into higher order clusters such as single and double strand breaks (SSBs and DSBs) based on inter-SB distances and on the number of affected strands. Comparisons of different nonuniform dose distributions lacking charged particle equilibrium may lead to erroneous conclusions regarding the effect of energy on relative biological effectiveness. The energy transfer-based SB definitions give similar SB yields as the one based on energy deposit when ETH ≈ 10.79 eV, but deviate significantly for higher ETH values. Between 30 and 40 nucleosomes/Gy show at least one SB in the ROI. The number of nucleosomes that present a complex damage pattern of more than 2 SBs and the degree of complexity of the damage in these nucleosomes diminish as the incident electron energy increases. DNA damage classification into SSB and DSB is highly dependent on the definitions of these higher order structures and their implementations. The authors' show that, for the four studied models, different yields are expected by up to 54% for SSBs and by up to 32% for DSBs, as a function of the incident electrons energy and of the models being compared. MCTS simulations allow to compare direct DNA damage types and complexities induced by ionizing radiation. However, simulation results depend to a large degree on user-defined parameters, definitions, and algorithms such as: DNA model, dose distribution, SB definition, and the DNA damage clustering algorithm. These interdependencies should be well controlled during the simulations and explicitly reported when comparing results to experiments or calculations.
Resumo:
A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76% compared to the calculated gas-phase value. Using statistically uncorrelated configurations sampled from the MC simulation,first-principle size-extensive calculations are performed to obtain the solvatochromic shift. Analysis is then made of the origin of the blue shift. Results both at the optimized geometry and in room-temperature liquid water show that hydrogen bonds of water with phenol promote a red shift when phenol is the proton-donor and a blue shift when phenol is the proton-acceptor. In the case of the optimized clusters the calculated shifts are in very good agreement with results obtained from mass-selected free jet expansion experiments. In the liquid case the contribution of the solute-solvent hydrogen bonds partially cancels and the total shift obtained is dominated by the contribution of the outer solvent water molecules. Our best result, including both inner and outer water molecules, is 570 +/- 35 cm(-1), in very good agreement with the small experimental shift of 460 cm(-1) for the absorption maximum.
Resumo:
In the protein folding problem, solvent-mediated forces are commonly represented by intra-chain pairwise contact energy. Although this approximation has proven to be useful in several circumstances, it is limited in some other aspects of the problem. Here we show that it is possible to achieve two models to represent the chain-solvent system. one of them with implicit and other with explicit solvent, such that both reproduce the same thermodynamic results. Firstly, lattice models treated by analytical methods, were used to show that the implicit and explicitly representation of solvent effects can be energetically equivalent only if local solvent properties are time and spatially invariant. Following, applying the same reasoning Used for the lattice models, two inter-consistent Monte Carlo off-lattice models for implicit and explicit solvent are constructed, being that now in the latter the solvent properties are allowed to fluctuate. Then, it is shown that the chain configurational evolution as well as the globule equilibrium conformation are significantly distinct for implicit and explicit solvent systems. Actually, strongly contrasting with the implicit solvent version, the explicit solvent model predicts: (i) a malleable globule, in agreement with the estimated large protein-volume fluctuations; (ii) thermal conformational stability, resembling the conformational hear resistance of globular proteins, in which radii of gyration are practically insensitive to thermal effects over a relatively wide range of temperatures; and (iii) smaller radii of gyration at higher temperatures, indicating that the chain conformational entropy in the unfolded state is significantly smaller than that estimated from random coil configurations. Finally, we comment on the meaning of these results with respect to the understanding of the folding process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Dimensionless spray flux Ψa is a dimensionless group that characterises the three most important variables in liquid dispersion: flowrate, drop size and powder flux through the spray zone. In this paper, the Poisson distribution was used to generate analytical solutions for the proportion of nuclei formed from single drops (fsingle) and the fraction of the powder surface covered by drops (fcovered) as a function of Ψa. Monte-Carlo simulations were performed to simulate the spray zone and investigate how Ψa, fsingle and fcovered are related. The Monte-Carlo data was an excellent match with analytical solutions of fcovered and fsingle as a function of Ψa. At low Ψa, the proportion of the surface covered by drops (fcovered) was equal to Ψa. As Ψa increases, drop overlap becomes more dominant and the powder surface coverage levels off. The proportion of nuclei formed from single drops (fsingle) falls exponentially with increasing Ψa. In the ranges covered, these results were independent of drop size, number of drops, drop size distribution (mono-sized, bimodal and trimodal distributions), and the uniformity of the spray. Experimental data of nuclei size distributions as a function of spray flux were fitted to the analytical solution for fsingle by defining a cutsize for single drop nuclei. The fitted cutsizes followed the spray drop sizes suggesting that the method is robust and that the cutsize does indicate the transition size between single drop and agglomerate nuclei. This demonstrates that the nuclei distribution is determined by the dimensionless spray flux and the fraction of drop controlled nuclei can be calculated analytically in advance.
The use of non-standard CT conversion ramps for Monte Carlo verification of 6 MV prostate IMRT plans
Resumo:
Monte Carlo (MC) dose calculation algorithms have been widely used to verify the accuracy of intensity-modulated radiotherapy (IMRT) dose distributions computed by conventional algorithms due to the ability to precisely account for the effects of tissue inhomogeneities and multileaf collimator characteristics. Both algorithms present, however, a particular difference in terms of dose calculation and report. Whereas dose from conventional methods is traditionally computed and reported as the water-equivalent dose (Dw), MC dose algorithms calculate and report dose to medium (Dm). In order to compare consistently both methods, the conversion of MC Dm into Dw is therefore necessary. This study aims to assess the effect of applying the conversion of MC-based Dm distributions to Dw for prostate IMRT plans generated for 6 MV photon beams. MC phantoms were created from the patient CT images using three different ramps to convert CT numbers into material and mass density: a conventional four material ramp (CTCREATE) and two simplified CT conversion ramps: (1) air and water with variable densities and (2) air and water with unit density. MC simulations were performed using the BEAMnrc code for the treatment head simulation and the DOSXYZnrc code for the patient dose calculation. The conversion of Dm to Dw by scaling with the stopping power ratios of water to medium was also performed in a post-MC calculation process. The comparison of MC dose distributions calculated in conventional and simplified (water with variable densities) phantoms showed that the effect of material composition on dose-volume histograms (DVH) was less than 1% for soft tissue and about 2.5% near and inside bone structures. The effect of material density on DVH was less than 1% for all tissues through the comparison of MC distributions performed in the two simplified phantoms considering water. Additionally, MC dose distributions were compared with the predictions from an Eclipse treatment planning system (TPS), which employed a pencil beam convolution (PBC) algorithm with Modified Batho Power Law heterogeneity correction. Eclipse PBC and MC calculations (conventional and simplified phantoms) agreed well (<1%) for soft tissues. For femoral heads, differences up to 3% were observed between the DVH for Eclipse PBC and MC calculated in conventional phantoms. The use of the CT conversion ramp of water with variable densities for MC simulations showed no dose discrepancies (0.5%) with the PBC algorithm. Moreover, converting Dm to Dw using mass stopping power ratios resulted in a significant shift (up to 6%) in the DVH for the femoral heads compared to the Eclipse PBC one. Our results show that, for prostate IMRT plans delivered with 6 MV photon beams, no conversion of MC dose from medium to water using stopping power ratio is needed. In contrast, MC dose calculations using water with variable density may be a simple way to solve the problem found using the dose conversion method based on the stopping power ratio.
Resumo:
A determinação do preço justo de um contrato de opções, trouxe enormes desa os a diversos ramos da Matemática procurando desenvolver e aperfeiçoar modelos e métodos que melhor representem os comportamentos dos mercados nanceiros. A avaliação de opções americanas apresenta uma di culdade acrescida, uma vez que é necessário determinar uma estratégia óptima ao seu exercício antecipado, já que estas opções podem ser exercidas em qualquer momento até à sua maturidade. Investigações recentes mostram que metodologias baseadas em técnicas de simulação podem ser usadas com sucesso neste tipo de opções (Duan and Simonato (2001), Longsta and Schwartz (2001), Stentoft (2005)). Neste trabalho, usamos métodos de Monte Carlo para avaliar opções Americanas, recorrendo à abordagem sugerida por Longsta and Schwartz (2001), combinando modelos GARCH para o subjacente com Filtered Historical Simulation (Barone, Engle and Mancini (2008)).
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Biomédica
Resumo:
The present paper reports the precipitation process of Al3Sc structures in an aluminum scandium alloy, which has been simulated with a synchronous parallel kinetic Monte Carlo (spkMC) algorithm. The spkMC implementation is based on the vacancy diffusion mechanism. To filter the raw data generated by the spkMC simulations, the density-based clustering with noise (DBSCAN) method has been employed. spkMC and DBSCAN algorithms were implemented in the C language and using MPI library. The simulations were conducted in the SeARCH cluster located at the University of Minho. The Al3Sc precipitation was successfully simulated at the atomistic scale with the spkMC. DBSCAN proved to be a valuable aid to identify the precipitates by performing a cluster analysis of the simulation results. The achieved simulations results are in good agreement with those reported in the literature under sequential kinetic Monte Carlo simulations (kMC). The parallel implementation of kMC has provided a 4x speedup over the sequential version.
Resumo:
In networks with small buffers, such as optical packet switching based networks, the convolution approach is presented as one of the most accurate method used for the connection admission control. Admission control and resource management have been addressed in other works oriented to bursty traffic and ATM. This paper focuses on heterogeneous traffic in OPS based networks. Using heterogeneous traffic and bufferless networks the enhanced convolution approach is a good solution. However, both methods (CA and ECA) present a high computational cost for high number of connections. Two new mechanisms (UMCA and ISCA) based on Monte Carlo method are proposed to overcome this drawback. Simulation results show that our proposals achieve lower computational cost compared to enhanced convolution approach with an small stochastic error in the probability estimation
Resumo:
Intensity-modulated radiotherapy (IMRT) treatment plan verification by comparison with measured data requires having access to the linear accelerator and is time consuming. In this paper, we propose a method for monitor unit (MU) calculation and plan comparison for step and shoot IMRT based on the Monte Carlo code EGSnrc/BEAMnrc. The beamlets of an IMRT treatment plan are individually simulated using Monte Carlo and converted into absorbed dose to water per MU. The dose of the whole treatment can be expressed through a linear matrix equation of the MU and dose per MU of every beamlet. Due to the positivity of the absorbed dose and MU values, this equation is solved for the MU values using a non-negative least-squares fit optimization algorithm (NNLS). The Monte Carlo plan is formed by multiplying the Monte Carlo absorbed dose to water per MU with the Monte Carlo/NNLS MU. Several treatment plan localizations calculated with a commercial treatment planning system (TPS) are compared with the proposed method for validation. The Monte Carlo/NNLS MUs are close to the ones calculated by the TPS and lead to a treatment dose distribution which is clinically equivalent to the one calculated by the TPS. This procedure can be used as an IMRT QA and further development could allow this technique to be used for other radiotherapy techniques like tomotherapy or volumetric modulated arc therapy.
Resumo:
Geophysical techniques can help to bridge the inherent gap with regard to spatial resolution and the range of coverage that plagues classical hydrological methods. This has lead to the emergence of the new and rapidly growing field of hydrogeophysics. Given the differing sensitivities of various geophysical techniques to hydrologically relevant parameters and their inherent trade-off between resolution and range the fundamental usefulness of multi-method hydrogeophysical surveys for reducing uncertainties in data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is the quantitative integration of the resulting vast and diverse database in order to obtain a unified model of the probed subsurface region that is internally consistent with all available data. To address this problem, we have developed a strategy towards hydrogeophysical data integration based on Monte-Carlo-type conditional stochastic simulation that we consider to be particularly suitable for local-scale studies characterized by high-resolution and high-quality datasets. Monte-Carlo-based optimization techniques are flexible and versatile, allow for accounting for a wide variety of data and constraints of differing resolution and hardness and thus have the potential of providing, in a geostatistical sense, highly detailed and realistic models of the pertinent target parameter distributions. Compared to more conventional approaches of this kind, our approach provides significant advancements in the way that the larger-scale deterministic information resolved by the hydrogeophysical data can be accounted for, which represents an inherently problematic, and as of yet unresolved, aspect of Monte-Carlo-type conditional simulation techniques. We present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on pertinent synthetic data and then applied to corresponding field data collected at the Boise Hydrogeophysical Research Site near Boise, Idaho, USA.
Resumo:
In radionuclide metrology, Monte Carlo (MC) simulation is widely used to compute parameters associated with primary measurements or calibration factors. Although MC methods are used to estimate uncertainties, the uncertainty associated with radiation transport in MC calculations is usually difficult to estimate. Counting statistics is the most obvious component of MC uncertainty and has to be checked carefully, particularly when variance reduction is used. However, in most cases fluctuations associated with counting statistics can be reduced using sufficient computing power. Cross-section data have intrinsic uncertainties that induce correlations when apparently independent codes are compared. Their effect on the uncertainty of the estimated parameter is difficult to determine and varies widely from case to case. Finally, the most significant uncertainty component for radionuclide applications is usually that associated with the detector geometry. Recent 2D and 3D x-ray imaging tools may be utilized, but comparison with experimental data as well as adjustments of parameters are usually inevitable.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).