993 resultados para Monodispersed spheres


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phase diagram of soft spheres with size dispersion is studied by means of an optimized Monte Carlo algorithm which allows us to equilibrate below the kinetic glass transition for all size distributions. The system ubiquitously undergoes a first-order freezing transition. While for a small size dispersion the frozen phase has a crystalline structure, large density inhomogeneities appear in the highly disperse systems. Studying the interplay between the equilibrium phase diagram and the kinetic glass transition, we argue that the experimentally found terminal polydispersity of colloids is a purely kinetic phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"AES research and development report"--Cover.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For n >= 5 and k >= 4, we show that any minimizing biharmonic map from Omega subset of R-n to S-k is smooth off a closed set whose Hausdorff dimension is at most n - 5. When n = 5 and k = 4, for a parameter lambda is an element of [0, 1] we introduce lambda-relaxed energy H-lambda of the Hessian energy for maps in W-2,W-2 (Omega; S-4) so that each minimizer u(lambda) of H-lambda is also a biharmonic map. We also establish the existence and partial regularity of a minimizer of H-lambda for lambda is an element of [0, 1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Periodic mesoporous organosilica (PMO) hollow spheres with tunable wall thickness have been successfully synthesized by a new vesicle and a liquid crystal “dual templating” mechanism, which may be applicable for drug and DNA delivery systems, biomolecular encapsulation, as well as nanoreactors for conducting biological reactions at the molecular levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The compaction behaviour of powders with soft and hard components is of particular interest to the paint processing industry. Unfortunately, at the present time, very little is known about the internal mechanisms within such systems and therefore suitable tests are required to help in the interpretative process. The TRUBAL, Distinct Element Method (D.E.M.) program was the method of investigation used in this study. Steel (hard) and rubber (soft) particles were used in the randomly-generated, binary assemblies because they provided a sharp contrast in physical properties. For reasons of simplicity, isotropic compression of two-dimensional assemblies was also initially considered. The assemblies were first subject to quasi-static compaction, in order to define their behaviour under equilibrium conditions. The stress-strain behaviour of the assemblies under such conditions was found to be adequately described by a second-order polynomial expansion. The structural evolution of the simulation assemblies was also similar to that observed for real powder systems. Further simulation tests were carried out to investigate the effects of particle size on the compaction behaviour of the two-dimensional, binary assemblies. Later work focused on the quasi-static compaction behaviour of three-dimensional assemblies, because they represented more realistic particle systems. The compaction behaviour of the assemblies during the simulation experiments was considered in terms of percolation theory concepts, as well as more familiar macroscopic and microstructural parameters. Percolation theory, which is based on ideas from statistical physics, has been found to be useful in the interpretation of the mechanical behaviour of simple, elastic lattices. However, from the evidence of this study, percolation theory is also able to offer a useful insight into the compaction behaviour of more realistic particle assemblies.