913 resultados para Monoamine-oxidase
Resumo:
Glucose oxidase can be effectively adsorbed onto the polypyrrole(PPy) thin film electrochemically formed on an anodized galssy carbon electrode(GCEa). Direct electron communication between the redox of GOD and the modified electrode was successfully achieved, which was detected using cyclic voltammetry. GOD entrapped in PPy film still remained its biological activity and could catalyze the oxidation of glucose. As a third generation biosensor, GOD-PPy/GCEa responded linearly up to 20 mM glucose with a wider linear concentration range.
Resumo:
The glassy carbon electrode (gce) and highly oriented pyrolytic graphite (hopg) were electrochemically anodized at a potential of +2.0 V (vs. Ag/AgCl) to create active sites and to improve the adsorption of glucose oxidase (GOD) and flavin adenine dinucle
Resumo:
Native and unfolded glucose oxidase (GOD) structures have been directly observed with scanning tunnelling microscopy (STM) for the first time. STM images show an opening butterfly-shaped pattern for the native GOD. When GOD molecules are extended on anodi
Resumo:
A glassy carbon electrode (GCE) modified with palladium provides excellent electrocatalytic oxidation of hydrogen peroxide. When the electrolyte contains palladium chloride and glucose oxidase, the GCE can be modified by electrochemical codeposition at a given potential. The resulting modified surface was coated with a thin film of Nation to form a glucose sensor. Such a glucose sensor was successfully used in the flow-injection analysis of glucose with high stability and anti-poisoning ability. It gave a detection limit of 1 X 10(-7) M injected glucose, with a linear concentration range of 0.001-8 mM. There is no obvious interference from substances such as ascorbate and saccharides.
Resumo:
The reaction rates of MTPP with oxygen in air are Inas than that with pure oxygen, the ratio is roughly the same as to the partial presence of imygen in air, The influences of S-ligand etbanethiol and O- litand Vc on the above Systems have also been investigated, the former makes the MP hands having more changes and the reaction rate constants becoming greater, the latter has less influence.
Resumo:
A sensitive and efficient method for simultaneous determination of glutamic acid (Glu), gamma-amino-butyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat endbrains was developed by high-performance liquid chromatography (HPLC) with fluorescence detection and on-line mass spectrometric identification following derivatization with 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC). Different parameters which influenced derivatization and separation were optimized. The complete separation of five neurotransmitter (NT) derivatives was performed on a reversed-phase Hypersil BDS-C-18 column with a gradient elution. The rapid structure identification of five neurotransmitter derivatives was carried out by on-line mass spectrometry with electrospray ionization (ESI) source in positive ion mode, and the BCEOC-labeled derivatives were characterized by easy-to-interpret mass spectra. Stability of derivatives, repeatability, precision and accuracy were evaluated and the results were excellent for efficient HPLC analysis. The quantitative linear range of five neurotransmitters were 2.441-2 x 10(4) nM, and limits of detection were in the range of 0.398-1.258 nM (S/N = 3:1). The changes of their concentrations in endbrains of three rat groups were also studied using this HPLC fluorescence detection method. The results indicated that exhausting exercise could obviously influence the concentrations of neurotransmitters in rat endbrains. The established method exhibited excellent validity, high sensitivity and convenience, and provided a new technique for simultaneous analysis of monoamine and amino acid neurotransmitters in rat brain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The intent of this review is to summarize current body of knowledge on the potential implication of the xanthine oxidase pathway (XO) on skeletal muscle damage. The possible involvement of the XO pathway in muscle damage is exemplified by the role of XO inhibitors (e.g., allopurinol) in attenuating muscle damage. Reliance on this pathway (as well as on the purine nucleotide cycle) could be exacerbated in conditions of low muscle glycogen availability. Thus, we also summarize current hypotheses on the etiology of both baseline and exertional muscle damage in McArdle disease, a condition caused by inherited deficiency of myophosphorylase. Because myophosphorylase catalyzes the first step of muscle glycogen breakdown, patients are unable to obtain energy from their muscle glycogen stores. Finally, we provide preliminary data from our laboratory on the potential implication of the XO pathway in the muscle damage that is commonly experienced by these patients.
Resumo:
Lipoprotein(a) (Lp(a)) has been identified as an emerging risk factor for the development of vascular diseases. The Lp(a) particle is assembled in a 2-step process upon secretion of the LDL and apo(a) components from hepatocytes. Work done by the Koschinsky group has identified an oxidase-like activity present in the conditioned medium (CM) harvested from human hepatoma (HepG2), as well as HEK 293 (human endothelian kidney) cells that catalyzes the rate of covalent Lp(a) formation. We have taken a candidate enzyme approach to identifying this oxidase activity. Specifically, we have proposed that the QSOX (Quiescin/sulfhydryl oxidase) is responsible for catalysis of covalent Lp(a) assembly. An oxidase activity assay developed by Dr. Thorpe (University of Delaware) was used to detect QSOX1 in CM harvested from cultured cell lines that catalyze covalent Lp(a) assembly. In addition, the QSOX1 transcript was identified in each cell line and quantified with the use of Real-Time RT-PCR. Quantitative assays of covalent Lp(a) assembly were performed to study some characteristics of the unkwown oxidase activity. First, conditioned medium was dialyzed through a 5 kDa cutoff, as this has previously been shown to reduce the aforementioned oxidase activity. Purified QSOX was then added back to the reaction and the rate of catalysis was observed. The addition of QSOX appeared to enhance the rate of covalent Lp(a) assembly in a dose-dependent manner. Additional covalent Lp(a) assembly assays were performed where various chemicals were added to determine whether Lp(a) assembly was affected. The addition of EDTA did not affect covalent assembly, suggesting that the oxidase activity may not be metallo-dependent. Moreover, dose-dependent addition of Calcium, DTT, Copper and glutathione to dialyzed medium also did not affect the rate of Lp(a) assembly. Taken together, these studies will aid in identifying the nature of the oxidase activity that catalyzes covalent Lp(a) assembly. This will provide us with valuable information on how Lp(a) particles are assembled, and may lead to the development of drugs inhibiting Lp(a) formation.