917 resultados para Molecular mechanical modelling


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using variothermal polymer micro-injection molding, disposable arrays of eight polymer micro-cantilevers each 500 μm long, 100 μm wide and 25 μm thick were fabricated. The present study took advantage of an easy flow grade polypropylene. After gold coating for optical read-out and asymmetrical sensitization, the arrays were introduced into the Cantisens(®) Research system to perform mechanical and functional testing. We demonstrate that polypropylene cantilevers can be used as biosensors for medical purposes in the same manner as the established silicon ones to detect single-stranded DNA sequences and metal ions in real-time. A differential signal of 7 nm was detected for the hybridization of 1 μM complementary DNA sequences. For 100 nM copper ions the differential signal was found to be (36 ± 5) nm. Nano-mechanical sensing of medically relevant, nanometer-size species is essential for fast and efficient diagnosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A number of thrombectomy devices using a variety of methods have now been developed to facilitate clot removal. We present research involving one such experimental device recently developed in the UK, called a ‘GP’ Thrombus Aspiration Device (GPTAD). This device has the potential to bring about the extraction of a thrombus. Although the device is at a relatively early stage of development, the results look encouraging. In this work, we present an analysis and modeling of the GPTAD by means of the bond graph technique; it seems to be a highly effective method of simulating the device under a variety of conditions. Such modeling is useful in optimizing the GPTAD and predicting the result of clot extraction. The aim of this simulation model is to obtain the minimum pressure necessary to extract the clot and to verify that both the pressure and the time required to complete the clot extraction are realistic for use in clinical situations, and are consistent with any experimentally obtained data. We therefore consider aspects of rheology and mechanics in our modeling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nondestructive techniques are extensively researched for the measurement of physical properties of fruits related to quality. Optical properties can be applied mainly in the detection of those quality features which are related to the chemical composition of the fruit, color (in the VIS region) or chemical constituents (sugar, in the MR region) being the most important. The most relevant mechanical property of fruits is consistency, generally called firmness, and to date only techniques which are able to measure the mechanical properties of the fruit bulk tissue are used for its prediction. Fruits can be modelled as elastic bodies, or at least as partially elastic. Therefore, the measurement of some elastic constants of the fruit can be used for the evaluation of its firmness. The differences in the response to loading are relevant in studying a) fruit firmness and b) bruising susceptibility. Both have been modelled for selected fruit species and varieties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il lavoro di ricerca presentato in questa tesi di dottorato riguarda l'applicazione di studi di modellistica molecolare per l'individuazione di nuovi approcci farmacologici nel campo della neuroprotezione e del controllo della proliferazione di cellule staminali. Durante il mio dottorato di ricerca, mi sono concentrata sullo studio del sistema degli endocannabinoidi come target per lo sviluppo di nuovi trattamenti neuroprotettivi. In particolare, la mia ricerca ha avuto come obiettivo la modulazione dei livelli di 2-arachidonilglicerolo e arachidonil-etanolamide tramite l'inibizione degli enzimi MGL (monoglyceride lipase) e FAAH (fatty acid amide hydrolase). Il mio progetto di ricerca comprende anche studi di modellistica molecolare per l'individuazione di piccole molecole in grado di inibire il complesso proteina-proteina YAP-TEAD. Tale complesso, coinvolto nei sistemi di regolazione della proliferazione cellulare, rappresenta un target di cruciale importanza nel controllo della proliferazione e differenziazione di cellule staminali e, al tempo stesso, nel controllo dell'espansione tumorale

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular modelling of human CYP1B1 based on homology with the mammalian P450, CYP2C5, of known three-dimensional structure is reported. The enzyme model has been used to investigate the likely mode of binding for selected CYP1B1 substrates, particularly with regard to the possible effects of allelic variants of CYP1B1 on metabolism. In general, it appears that the CYP1B1 model is consistent with known substrate selectivity for the enzyme, and the sites of metabolism can be rationalized in terms of specific contacts with key amino acid residues within the CYP1B1 heme locus. Further-more, a mode of binding interaction for the inhibitor, a-naphthoflavone, is presented which accords with currently available information. The current paper shows that a combination of molecular modelling and experimental determinations on the substrate metabolism for CYP1B1 allelic variants can aid in the understanding of structure-function relationships within P450 enzymes. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have determined the three-dimensional structure of the protein complex between latexin and carboxypeptidase A using a combination of chemical cross-linking, mass spectrometry and molecular docking. The locations of three intermolecular cross-links were identified using mass spectrometry and these constraints were used in combination with a speed-optimised docking algorithm allowing us to evaluate more than 3 x 10(11) possible conformations. While cross-links represent only limited structural constraints, the combination of only three experimental cross-links with very basic molecular docking was sufficient to determine the complex structure. The crystal structure of the complex between latexin and carboxypeptidase A4 determined recently allowed us to assess the success of this structure determination approach. Our structure was shown to be within 4 angstrom r.m.s. deviation of C alpha atoms of the crystal structure. The study demonstrates that cross-linking in combination with mass spectrometry can lead to efficient and accurate structural modelling of protein complexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since cyclothialidine was discovered as the most active DNA gyrase inhibitor in 1994, enormous efforts have been devoted to make it into a commercial medicine by a number of pharmaceutical companies and research groups worldwide. However, no serious breakthrough has been made up to now. An essential problem involved with cyclothialidine is that though it demonstrated the potent inhibition of DNA gyrase, it showed little activity against bacteria. This probably is attributable to its inability to penetrate bacterial cell walls and membranes. We applied the TSAR programme to generate a QSAR equation to the gram-negative organisms. In that equation, LogP is profoundly indicated as the key factor influencing the cyclothialidine activity against bacteria. However, the synthesized new analogues have failed to prove that. In the structure based drug design stage, we designed a group of open chain cyclothialidine derivatives by applying the SPROUT programme and completed the syntheses. Improved activity is found in a few analogues and a 3D pharmacophore of the DNA gyrase B is proposed to lead to synthesis of the new derivatives for development of potent antibiotics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new 3D implementation of a hybrid model based on the analogy with two-phase hydrodynamics has been developed for the simulation of liquids at microscale. The idea of the method is to smoothly combine the atomistic description in the molecular dynamics zone with the Landau-Lifshitz fluctuating hydrodynamics representation in the rest of the system in the framework of macroscopic conservation laws through the use of a single "zoom-in" user-defined function s that has the meaning of a partial concentration in the two-phase analogy model. In comparison with our previous works, the implementation has been extended to full 3D simulations for a range of atomistic models in GROMACS from argon to water in equilibrium conditions with a constant or a spatially variable function s. Preliminary results of simulating the diffusion of a small peptide in water are also reported.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New devices were designed to generate a localized mechanical vibration of flexible gels where human umbilical vein endothelial cells (HUVECs) were cultured. The stimulation setups were able to apply relatively large strains (30%~50%) at high temporal frequencies (140~207 Hz) in a localized subcellular region. One of the advantages of this technique was to be less invasive to the innate cellular functions because there was no direct contact between the stimulating probe and the cell body. A mechanical vibration induced by the device in the substrate gel where cells were seeded could mainly cause global calcium responses of the cells. This global response was initiated by the influx of calcium across the stretch-activated channels in the plasma membrane. The subsequent production of inositol triphosphate (IP3) via phospholipase C (PLC) activation triggered the calcium release from the endoplasmic reticulum (ER) to cause a global intracellular calcium fluctuation over the whole cell body. This global calcium response was also shown to depend on actomyosin contractility and F-actin integrity, probably controlling the membrane stretch-activated channels. The localized nature of the stimulation is one of the most important features of these new designs as it allowed the observation of the calcium signaling propagation by ER calcium release. The next step was to focus on the calcium influx, more specifically the TRPM7 channels. As TRPM7 expression may modulate cell adhesion, an adhesion assay was developed and tested on HUVECs seeded on gel substrates with different treatments: normal treatment on gels showed highest attachment rate, followed by the partially treated gels (only 5% of usual fibronectin amount) and untreated gels, with the lowest attachment rate. The trend of the attachment rates correlated to the magnitude of the calcium signaling observed after mechanical stimulation. TRPM7 expression inhibition by siRNA caused an increased attachment rate when compared to both control and non-targeting siRNA-treated cells, but resulted in an actual weaker response in terms of calcium signaling. It suggests that TRPM7 channels are indeed important for the calcium signaling in response to mechanical stimulation. A complementary study was also conducted consisting in the mechanical stimulation of a dissected Drosophila embryo. Although ionomycin treatment showed calcium influx in the tissue, the mechanical stimulation delivered as a vertical vibration did not elicited calcium signaling in response. One possible reason is the dissection procedure causing desensitization of the tissue due to the scrapings and manipulations to open the embryo.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Angiogenesis is a process by which new blood vessels are formed from the pre-existing vasculature, and it is a key process that leads to tumour development. Some studies have recognized phenolic compounds as chemopreventive agents; flavonoids, in particular, seem to suppress the growth of tumor cells modifying the cell cycle. Herein, the antiangiogenic activity of Roman chamomile (Chamaemelum nobile L.) extracts (methanolic extract and infusion) and the main phenolic compounds present (apigenin, apigenin-7-O-glucoside, caffeic acid, chlorogenic acid, luteolin, and luteolin-7-O-glucoside) was evaluated through enzymatic assays using the tyrosine kinase intracellular domain of the Vascular Endothelium Growth Factor Receptor-2 (VEGFR-2), which is a transmembrane receptor expressed fundamentally in endothelial cells involved in angiogenesis, and molecular modelling studies. The methanolic extract showed a lower IC50 value (concentration that provided 50% of VEGFR-2 inhibition) than the infusion, 269 and 301 μg mL(-1), respectively. Regarding phenolic compounds, luteolin and apigenin showed the highest capacity to inhibit the phosphorylation of VEGFR-2, leading us to believe that these compounds are involved in the activity revealed by the methanolic extract.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mechanical behaviour and performance of a ductile iron component is highly dependent on the local variations in solidification conditions during the casting process. Here we show a framework which combine a previously developed closed chain of simulations for cast components with a micro-scale Finite Element Method (FEM) simulation of the behaviour and performance of the microstructure. A casting process simulation, including modelling of solidification and mechanical material characterization, provides the basis for a macro-scale FEM analysis of the component. A critical region is identified to which the micro-scale FEM simulation of a representative microstructure, generated using X-ray tomography, is applied. The mechanical behaviour of the different microstructural phases are determined using a surrogate model based optimisation routine and experimental data. It is discussed that the approach enables a link between solidification- and microstructure-models and simulations of as well component as microstructural behaviour, and can contribute with new understanding regarding the behaviour and performance of different microstructural phases and morphologies in industrial ductile iron components in service.