981 resultados para Molecular biology|Genetics|Cellular biology
Resumo:
Animal venom components are of considerable interest to researchers across a wide variety of disciplines, including molecular biology, biochemistry, medicine, and evolutionary genetics. The three-finger family of snake venom peptides is a particularly interesting and biochemically complex group of venom peptides, because they are encoded by a large multigene family and display a diverse array of functional activities. In addition, understanding how this complex and highly varied multigene family evolved is an interesting question to researchers investigating the biochemical diversity of these peptides and their impact on human health. Therefore, the purpose of our study was to investigate the long-term evolutionary patterns exhibited by these snake venom toxins to understand the mechanisms by which they diversified into a large, biochemically diverse, multigene family. Our results show a much greater diversity of family members than was previously known, including a number of subfamilies that did not fall within any previously identified groups with characterized activities. In addition, we found that the long-term evolutionary processes that gave rise to the diversity of three-finger toxins are consistent with the birth-and-death model of multigene family evolution. It is anticipated that this three-finger toxin toolkit will prove to be useful in providing a clearer picture of the diversity of investigational ligands or potential therapeutics available within this important family.
Resumo:
Mobile Lipids detected using H-1-NMR in stimulated lymphocytes were correlated with cell cycle phase, expression of the interleukin-2 receptor alpha and proliferation to assess the activation status of the lymphocytes. Mobile lipid levels, IL-2R alpha expression and proliferation increased after treatment with PMA and ionomycin. PMA or ionomycin stimulation alone induced increased IL-2R alpha expressiom but not proliferation, PMA- but not ionomycin-stimulation generated mobile lipid, Treatment with anti-CD3 antibody did not increase IL-2R alpha expression or proliferation but did generate increased amounts of mobile lipid, The cell cycle status of thymocytes treated with anti-CD3, PMA or ionomycin alone indicated an. accumulation of the cells in the G(1) phase of the cell cycle, The generation of mobile lipid was abrogated in anti-CD3 antibody-stimulated thymic lymphocytes but not in splenic lymphocytes, using a phosphatidylcholine-specific phospholipase C (PC-PLC) inhibitor which blocked cells in the G(1)/S phase of the cell cycle, This suggests that the H-1-NMR-detectable mobile Lipid may be generated in anti-CD3 antibody-stimulated thymic lymphocytes by the action of PC-PLC activity via the catabolism of PC, in the absence of classical signs of activation. (C) 1997 Academic Press.
Resumo:
Hantaviruses are rodent-borne Bunyaviruses that infect the Arvicolinae, Murinae, and Sigmodontinae subfamilies of Muridae. The rate of molecular evolution in the hantaviruses has been previously estimated at approximately 10(-7) nucleotide substitutions per site, per year (substitutions/site/year), based on the assumption of codivergence and hence shared divergence times with their rodent hosts. If substantiated, this would make the hantaviruses among the slowest evolving of all RNA viruses. However, as hantaviruses replicate with an RNA-dependent RNA polymerase, with error rates in the region of one mutation per genome replication, this low rate of nucleotide substitution is anomalous. Here, we use a Bayesian coalescent approach to estimate the rate of nucleotide substitution from serially sampled gene sequence data for hantaviruses known to infect each of the 3 rodent subfamilies: Araraquara virus ( Sigmodontinae), Dobrava virus ( Murinae), Puumala virus ( Arvicolinae), and Tula virus ( Arvicolinae). Our results reveal that hantaviruses exhibit shortterm substitution rates of 10(-2) to 10(-4) substitutions/site/year and so are within the range exhibited by other RNA viruses. The disparity between this substitution rate and that estimated assuming rodent-hantavirus codivergence suggests that the codivergence hypothesis may need to be reevaluated.
Resumo:
The near completion of the Human Genome Project stands as a remarkable achievement, with enormous implications for both science and society. For scientists, it is the first step in a complex process that will lead to important advances in the diagnosis and treatment of many diseases. Society, meanwhile, must prevent genetic discrimination, and protect genetic privacy through appropriate legislation.
Resumo:
Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying,that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.
Resumo:
Mutations in the ATM gene lead to the genetic disorder ataxia-telangiectasia. ATM encodes a protein kinase that is mainly distributed in the nucleus of proliferating cells. Recent studies reveal that ATM regulates multiple cell cycle checkpoints by phosphorylating different targets at different stages of the cell cycle. ATM also functions in the regulation of DNA repair and apoptosis, suggesting that it is a central regulator of responses to DNA double-strand breaks.
Resumo:
Cell suspension cultures are useful for a wide range of biochemical and physiological studies, yet their production can be technically demanding and often unreliable. Here we describe a protocol for producing Arabidopsis cell suspension cultures that is reliable and easy to use.
Resumo:
Early pregnancy factor (EPF) is a secreted protein with growth regulatory and immunomodulatory properties. Human platelet-derived EPF shares amino acid sequence identity with chaperonin 10 (Cpn10), a mitochondrial matrix protein which functions as a molecular chaperone. The striking differences in cellular localization and function of the two proteins suggest differential regulation of production reflecting either alternative transcription of the same gene or transcription from different genes. In mammals and more distantly related genera, there is a large gene family with homology to CPN 10 cDNA, which includes intronless copies of the coding sequence. To determine whether this could represent the gene for EPF, we have screened a mouse genomic library and sequenced representative Cpn10 family members, looking for a functional gene distinct from that of Cpn 10, which could encode EPF. Eight distinct genes were identified. Cpn10 contains introns, while other members are intronless. Six of these appear to be pseudogenes, and the remaining member, Cpn10-rs1, would encode a full-length protein. The 309-bp open reading frame (ORF) is identical to that of mouse Cpn10 cDNA with the exception of three single-base changes, two resulting in amino acid changes. Only one further single nucleotide difference between the Cpn10-rs1 and Cpn10 cDNAs is observed, located in the 3' UTR. Single nucleotide primer extension was applied to discriminate between Cpn10-rs1 and Cpn10 expression. Cpn10, which is ubiquitous, was detected in all tissue samples tested, whereas Cpn10-rs1 was expressed selectively. The pattern was completely coincident with known patterns of EPF activity, strongly suggesting that Cpn10-rs1 does encode EPF. The complete ORF of Cpn10-rs1 was expressed in E. coli. The purified recombinant protein was found to be equipotent with native human platelet-derived EPF in the bioassay for EPF, the rosette inhibition test.
Resumo:
Life history has been implicated as a determinant of variation in rate of molecular evolution amongst vertebrate species because of a negative correlation between bode size and substitution rate for many Molecular data sets. Both the generality and the cause of the negative bode size trend have been debated, and the validity of key studies has been questioned (particularly concerning the failure to account for phylogenetic bias). In this study, a comparative method has been used to test for an association between a range of life-history variables-such as body size age at maturity, and clutch size-and DNA substitution rate for three genes (NADH4, cytochrome b, and c-mos). A negative relationship between body size and rate of molecular evolution was found for phylogenetically independent pairs of reptile species spanning turtles. lizards. snakes, crocodile, and tuatara. Although this Study was limited by the number of comparisons for which both sequence and lite-history data were available, the results, suggest that a negative bode size trend in rate of molecular evloution may be a general feature of reptile molecular evolution. consistent with similar studies of mammals and birds. This observation has important implications for uncovering the mechanisms of molecular evolution and warns against assuming that related lineages will share the same substitution rate (a local molecular clock) in order to date evolutionary divergences from DNA sequences.
Resumo:
Predisposition to melanoma is genetically heterogeneous. Two high penetrance susceptibility genes, CDKN2A and CDK4, have so far been identified and mapping is ongoing to localize and identify others. With the advent of a catalogue of millions of potential DNA polymorphisms, attention is now also being focused on identification of genes that confer a more modest contribution to melanoma risk, such as those encoding proteins involved in pigmentation, DNA repair, cell growth and differentiation or detoxification of metabolites. One such pigmentation gene, MC1R, has not only been found to be a low penetrance melanoma gene but has also been shown to act as a genetic modifier of melanoma risk in individuals carrying CDKN2A mutations. Most recently, an environmental agent, ultraviolet radiation, has also been established as a modifier of melanoma risk in CDKN2A mutation carriers. Hence, melanoma is turning out to be an excellent paradigm for studying gene-gene and gene-environment interactions.
Resumo:
We show here that nerve growth factor (NGF), the canonical neurotrophic factor, is synthesized and released by breast cancer cells. High levels of NGF transcript and protein were detected in breast cancer cells by reverse transcription-PCR, Western blotting, ELISA assay and immunohistochemistry. Conversely, NGF production could not be detected in normal breast epithelial cells at either the transcriptional or protein level. Confocal analysis indicated the presence of NGF within classical secretion vesicles. Breast cancer cell-produced NGF was biologically active, as demonstrated by its ability to induce the neuronal differentiation of embryonic neural precursor cells. Importantly, the constitutive growth of breast cancer cells was strongly inhibited by either NGF-neutralizing antibodies or K-252a, a pharmacological inhibitor of NGF receptor TrkA, indicating the existence of an NGF autocrine loop. Together, our data demonstrate the physiological relevance of NGF in breast cancer and its potential interest as a marker and therapeutic target.
Resumo:
Biogenic amines and their receptors regulate and modulate many physiological and behavioural processes in animals. In vertebrates, octopamine is only found in trace amounts and its function as a true neurotransmitter is unclear. In protostomes, however, octopamine can act as neurotransmitter, neuromodulator and neurohormone. In the honeybee, octopamine acts as a neuromodulator and is involved in learning and memory formation. The identification of potential octopamine receptors is decisive for an understanding of the cellular pathways involved in mediating the effects of octopamine. Here we report the cloning and functional characterization of the first octopamine receptor from the honeybee, Apis mellifera . The gene was isolated from a brain-specific cDNA library. It encodes a protein most closely related to octopamine receptors from Drosophila melanogaster and Lymnea stagnalis . Signalling properties of the cloned receptor were studied in transiently transfected human embryonic kidney (HEK) 293 cells. Nanomolar to micromolar concentrations of octopamine induced oscillatory increases in the intracellular Ca2+ concentration. In contrast to octopamine, tyramine only elicited Ca2+ responses at micromolar concentrations. The gene is abundantly expressed in many somata of the honeybee brain, suggesting that this octopamine receptor is involved in the processing of sensory inputs, antennal motor outputs and higher-order brain functions.
Resumo:
With recent advances in molecular biology, it is now possible to use the trace amounts of DNA in faeces to non-invasively sample endangered species for genetic studies. A highly vulnerable population of approximately 100 great bustards (Otis tarda) exists in Morocco necessitating the use of non-invasive protocols to study their genetic structure. Here we report a reliable silica-based method to extract DNA from great bustard faeces. We found that successful extraction and amplification correlated strongly with faeces freshness and composition. We could not extract amplifiable DNA from 30% of our samples as they were dry or contained insect material. However 100% of our fresh faecal samples containing no obvious insect material worked, allowing us to assess the levels of genetic variation among 25 individuals using a 542 bp control region sequence. We were able to extract DNA from four out of five other avian species, demonstrating that faeces represents a suitable source of DNA for population genetics studies in a broad range of species.
Resumo:
Transmembrane receptor-kinases are widespread throughout eukaryotes and their activities are known to regulate all kinds of cellular responses in diverse organs and cell types. In order to guarantee the correct amplitude and duration of signals, receptor levels at the cellular surface need to be tightly controlled. The regulation of receptor degradation is the most direct way to achieve this and elaborate mechanisms are in place to control this process. Therefore, the rate of receptor degradation is a parameter of central importance for understanding the dynamics of a signal transduction cascade. Unfortunately, degradation of transmembrane receptors is a complicated multistep process that involves internalization from the plasma membrane, invagination into the lumen of endosomal compartments, and finally fusion with the vacuole for degradation by vacuolar proteases. Therefore, degradation should be measured in an as noninvasive way as possible, such as not to interfere with the complicated transport processes. Here, a method for minimally invasive, in vivo turn-over measurements in intact organs is provided. This technique was used for quantifying the turn-over rates of the Brassinosteroid receptor kinase BRI1 (BRASSINOSTEROID INSENSITIVE 1) in Arabidopsis thaliana root meristems. Pulse-chase expression of a fluorescently labeled BRI1 variant was used and its turn-over rate was determined by quantitative confocal microscopy. This method is well suited to measure turn-over of transmembrane kinases, but can evidently be extended to measure turn-over of any types of transmembrane proteins.
Resumo:
Dengue virulence and fitness are important factors that determine disease outcome. However, dengue virus (DENV) molecular biology and pathogenesis are not completely elucidated. New insights on those mechanisms have been facilitated by the development of reverse genetic systems in the past decades. Unfortunately, instability of flavivirus genomes cloned in Escherichia coli has been a major problem in these systems. Here, we describe the development of a complete reverse genetics system, based on the construction of an infectious clone and replicon for a low passage DENV-3 genotype III of a clinical isolate. Both constructs were assembled into a newly designed yeast- E. coli shuttle vector by homologous recombination technique and propagated in yeast to prevent any possible genome instability in E. coli . RNA transcripts derived from the infectious clone are infectious upon transfection into BHK-21 cells even after repeated passages of the plasmid in yeast. Transcript-derived DENV-3 exhibited growth kinetics, focus formation size comparable to original DENV-3 in mosquito C6/36 cell culture. In vitro characterisation of DENV-3 replicon confirmed its identity and ability to replicate transiently in BHK-21 cells. The reverse genetics system reported here is a valuable tool that will facilitate further molecular studies in DENV replication, virus attenuation and pathogenesis.