984 resultados para Molecular Recognition
Resumo:
Importin-alpha is the nuclear import receptor that recognizes cargo proteins with nuclear localization sequences (NLSs). Tile study of NLS peptidomimetics can provide a better understanding of the requirements for the molecular recognition of cargo proteins by importin-alpha, and potentially engender a large number of applications in medicine. Importin-a was crystallized with a set of six NLS peptidomimetics, and X-ray diffraction data were collected in the range 2.1-2.5 angstrom resolution. Preliminary electron density calculations show that the ligands are present in the crystals. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
To ensure signalling fidelity, kinases must act only on a defined subset of cellular targets. Appreciating the basis for this substrate specificity is essential for understanding the role of an individual protein kinase in a particular cellular process. The specificity in the cell is determined by a combination of peptide specificity of the kinase (the molecular recognition of the sequence surrounding the phosphorylation site), substrate recruitment and phosphatase activity. Peptide specificity plays a crucial role and depends on the complementarity between the kinase and the substrate and therefore on their three-dimensional structures. Methods for experimental identification of kinase substrates and characterization of specificity are expensive and laborious, therefore, computational approaches are being developed to reduce the amount of experimental work required in substrate identification. We discuss the structural basis of substrate specificity of protein kinases and review the experimental and computational methods used to obtain specificity information. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Peptidic Nucleic Acids (PNAs) are achiral, uncharged nucleic add mimetics, with a novel backbone composed of N-(2-aminoethyl)glycine units attached to the DNA bases through carboxymethylene linkers. With the aim of extending and improving upon the molecular recognition properties of PNAs, the aim of this work was to synthesjse PNA building block intermediates containing a series of substituted purine bases for subsequent use in automated PNA synthesis. Four purine bases: 2,6~diaminopurine (D), isoGuanine (isoG), xanthine (X) and hypoxanthine (H) were identified for incorporation into PNAs targeted to DNA, with the promise of increased hybrid stability over extended pH ranges together with improvements over the use of adenine (A) in duplex formation, and cytosine (C) in triplex formation. A reliable, high-yielding synthesis of the PNA backbone component N -('2- butyloxycarbonyl-aminoethyl)glycinate ethyl ester was establishecl. The precursor N~(2-butyloxycarbonyl)amino acetonitrile was crystallised and analysed by X-ray crystallography for the first time. An excellent refinement (R = 0.0276) was attained for this structure, allowing comparisons with known analogues. Although chemical synthesis of pure, fully-characterised PNA monomers was not achieved, chemical synthesis of PNA building blocks composed of diaminopurine, xanthine and hypoxanthine was completely successful. In parallel, a second objective of this work was to characterise and evaluate novel crystalline intermediates, which formed a new series of substituted purine bases, generated by attaching alkyl substituents at the N9 or N7 sites of purine bases. Crystallographic analysis was undertaken to probe the regiochemistry of isomers, and to reveal interesting structural features of the new series of similarly-substituted purine bases. The attainment of the versatile synthetic intermediate 2,6-dichloro~9- (carboxymethyl)purine ethyl ester, and its homologous regioisomers 6-chloro~9- (carboxymethyl)purine ethyl ester and 6-chloro-7-(carboxymethyl)purine ethyl ester, necessitated the use of X-ray crystallographic analysis for unambiguous structural assignment. Successful refinement of the disordered 2,6-diamino-9-(carboxymethyl) purine ethyl ester allowed comparison with the reported structure of the adenine analogue, ethyl adenin-9-yl acetate. Replacement of the chloro moieties with amino, azido and methoxy groups expanded the internal angles at their point of attachment to the purine ring. Crystallographic analysis played a pivotal role towards confirming the identity of the peralkylated hypoxanthine derivative diethyl 6-oxo-6,7-dihydro-3H-purlne~3,7~djacetate, where two ethyl side chains were found to attach at N3 and N7,
Resumo:
Life, and the biochemistry of which it is ultimately comprised, is built from the interactions of proteins, and the study of protein-protein interactions is fast becoming a central feature of molecular bioscience. This is as true of immunobiology as it is of other areas of the wider biological milieu. Protein-protein interactions within an immunological setting comprise both the kind familiar from other areas of biology and instantiations of protein-protein interactions special to the immune arena. Of the generic kind of protein-protein interaction, co-stimulatory receptors, such as CD28, and the interaction of accessory proteins, such as CD4 or CD8, are amongst the most prevalent and apposite of examples. The key examples of special immunological instantiations of protein-protein interactions are the binding of antigens by antibodies and the formation of peptide-MHC-TCR complexes; both prime examples of vital molecular recognition events mediated by protein-protein interactions. In this brief review, and within the context of this burgeoning field, we examine immunological protein-protein interactions, focussing on the problematic nature of defining such interactions. © 2011 by Nova Science Publishers, Inc. All rights reserved.
Resumo:
Dynamics of biomolecules over various spatial and time scales are essential for biological functions such as molecular recognition, catalysis and signaling. However, reconstruction of biomolecular dynamics from experimental observables requires the determination of a conformational probability distribution. Unfortunately, these distributions cannot be fully constrained by the limited information from experiments, making the problem an ill-posed one in the terminology of Hadamard. The ill-posed nature of the problem comes from the fact that it has no unique solution. Multiple or even an infinite number of solutions may exist. To avoid the ill-posed nature, the problem needs to be regularized by making assumptions, which inevitably introduce biases into the result.
Here, I present two continuous probability density function approaches to solve an important inverse problem called the RDC trigonometric moment problem. By focusing on interdomain orientations we reduced the problem to determination of a distribution on the 3D rotational space from residual dipolar couplings (RDCs). We derived an analytical equation that relates alignment tensors of adjacent domains, which serves as the foundation of the two methods. In the first approach, the ill-posed nature of the problem was avoided by introducing a continuous distribution model, which enjoys a smoothness assumption. To find the optimal solution for the distribution, we also designed an efficient branch-and-bound algorithm that exploits the mathematical structure of the analytical solutions. The algorithm is guaranteed to find the distribution that best satisfies the analytical relationship. We observed good performance of the method when tested under various levels of experimental noise and when applied to two protein systems. The second approach avoids the use of any model by employing maximum entropy principles. This 'model-free' approach delivers the least biased result which presents our state of knowledge. In this approach, the solution is an exponential function of Lagrange multipliers. To determine the multipliers, a convex objective function is constructed. Consequently, the maximum entropy solution can be found easily by gradient descent methods. Both algorithms can be applied to biomolecular RDC data in general, including data from RNA and DNA molecules.
Resumo:
Résumé : Les méthodes de détection de similarités de sites de liaison servent entre autres à la prédiction de fonction et à la prédiction de cibles croisées. Ces méthodes peuvent aider à prévenir les effets secondaires, suggérer le repositionnement de médicament existants, identifier des cibles polypharmacologiques et des remplacements bio-isostériques. La plupart des méthodes utilisent des représentations basées sur les atomes, même si les champs d’interaction moléculaire (MIFs) représentent plus directement ce qui cherche à être identifié. Nous avons développé une méthode bio-informatique, IsoMif, qui détecte les similarités de MIF entre différents sites de liaisons et qui ne nécessite aucun alignement de séquence ou de structure. Sa performance a été comparée à d’autres méthodes avec des bancs d’essais, ce qui n’a jamais été fait pour une méthode basée sur les MIFs. IsoMif performe mieux en moyenne et est plus robuste. Nous avons noté des limites intrinsèques à la méthodologie et d’autres qui proviennent de la nature. L’impact de choix de conception sur la performance est discuté. Nous avons développé une interface en ligne qui permet la détection de similarités entre une protéine et différents ensembles de MIFs précalculés ou à des MIFs choisis par l’utilisateur. Des sessions PyMOL peuvent être téléchargées afin de visualiser les similarités identifiées pour différentes interactions intermoléculaires. Nous avons appliqué IsoMif pour identifier des cibles croisées potentielles de drogues lors d’une analyse à large échelle (5,6 millions de comparaisons). Des simulations d’arrimage moléculaire ont également été effectuées pour les prédictions significatives. L’objectif est de générer des hypothèses de repositionnement et de mécanismes d’effets secondaires observés. Plusieurs exemples sont présentés à cet égard.
Resumo:
Schistosomes are unable to synthesize purines de novo and depend exclusively on the salvage pathway for their purine requirements. It has been suggested that blockage of this pathway could lead to parasite death. The enzyme purine nucleoside phosphorylase (PNP) is one of its key components and molecules designed to inhibit the low-molecular-weight (LMW) PNPs, which include both the human and schistosome enzymes, are typically analogues of the natural substrates inosine and guanosine. Here, it is shown that adenosine both binds to Schistosoma mansoni PNP and behaves as a weak micromolar inhibitor of inosine phosphorolysis. Furthermore, the first crystal structures of complexes of an LMW PNP with adenosine and adenine are reported, together with those with inosine and hypoxanthine. These are used to propose a structural explanation for the selective binding of adenosine to some LMW PNPs but not to others. The results indicate that transition-state analogues based on adenosine or other 6-amino nucleosides should not be discounted as potential starting points for alternative inhibitors.
Resumo:
Brittle cornea syndrome (BCS) is an autosomal recessive disorder characterised by extreme corneal thinning and fragility. Corneal rupture can therefore occur either spontaneously or following minimal trauma in affected patients. Two genes, ZNF469 and PRDM5, have now been identified, in which causative pathogenic mutations collectively account for the condition in nearly all patients with BCS ascertained to date. Therefore, effective molecular diagnosis is now available for affected patients, and those at risk of being heterozygous carriers for BCS. We have previously identified mutations in ZNF469 in 14 families (in addition to 6 reported by others in the literature), and in PRDM5 in 8 families (with 1 further family now published by others). Clinical features include extreme corneal thinning with rupture, high myopia, blue sclerae, deafness of mixed aetiology with hypercompliant tympanic membranes, and variable skeletal manifestations. Corneal rupture may be the presenting feature of BCS, and it is possible that this may be incorrectly attributed to non-accidental injury. Mainstays of management include the prevention of ocular rupture by provision of protective polycarbonate spectacles, careful monitoring of visual and auditory function, and assessment for skeletal complications such as developmental dysplasia of the hip. Effective management depends upon appropriate identification of affected individuals, which may be challenging given the phenotypic overlap of BCS with other connective tissue disorders.
Resumo:
Background and aims Recent studies have adopted a broad definition of Sapindaceae that includes taxa traditionally placed in Aceraceae and Hippocastanaceae, achieving monophyly but yielding a family difficult to characterize and for which no obvious morphological synapomorphy exists. This expanded circumscription was necessitated by the finding that the monotypic, temperate Asian genus Xanthoceras, historically placed in Sapindaceae tribe Harpullieae, is basal within the group. Here we seek to clarify the relationships of Xanthoceras based on phylogenetic analyses using a dataset encompassing nearly 3/4 of sapindaceous genera, comparing the results with information from morphology and biogeography, in particular with respect to the other taxa placed in Harpullieae. We then re-examine the appropriateness of maintaining the current broad, morphologically heterogeneous definition of Sapindaceae and explore the advantages of an alternative family circumscription. Methods Using 243 samples representing 104 of the 142 currently recognized genera of Sapindaceae s. lat. (including all in Harpullieae), sequence data were analyzed for nuclear (ITS) and plastid (matK, rpoB, trnD-trnT, trnK-matK, trnL-trnF and trnS-trnG) markers, adopting the methodology of a recent family-wide study, performing single-gene and total evidence analyses based on maximum likelihood (ML) and maximum parsimony (MP) criteria, and applying heuristic searches developed for large datasets, viz, a new strategy implemented in RAxML (for ML) and the parsimony ratchet (for MP). Bootstrap analyses were performed for each method to test for congruence between markers. Key results Our findings support earlier suggestions that Harpullieae are polyphyletic: Xanthoceras is confirmed as sister to all other sampled taxa of Sapindaceae s. lat.; the remaining members belong to three other clades within Sapindaceae s. lat., two of which correspond respectively to the groups traditionally treated as Aceraceae and Hippocastanaceae, together forming a clade sister to the largely tropical Sapindaceae s. str., which is monophyletic and morphologically coherent provided Xanthoceras is excluded. Conclusion To overcome the difficulties of a broadly circumscribed Sapindaceae, we resurrect the historically recognized temperate families Aceraceae and Hippocastanaceae, and describe a new family, Xanthoceraceae, thus adopting a monophyletic and easily characterized circumscription of Sapindaceae nearly identical to that used for over a century.
Resumo:
While the influence of HLA-AB and -DRB1 matching on the outcome of bone marrow transplantation (BMT) with unrelated donors is clear, the evaluation of HLA-C has been hampered by its poor serological definition. Because the low resolution of standard HLA-C typing could explain the significant number of positive cytotoxic T lymphocyte precursor frequency (CTLpf) tests found among HLA-AB-subtype, DRB1/B3/B5-subtype matched patient/donor pairs, we have identified by sequencing the incompatibilities recognized by CD8+ CTL clones obtained from such positive CTLpf tests. In most cases the target molecules were HLA-C antigens that had escaped detection by serology (e.g. Cw*1601, 1502 or 0702). Direct recognition of HLA-C by a CTL clone was demonstrated by lysis of the HLA class I-negative 721.221 cell line transfected with Cw*1601 cDNA. Because of the functional importance of Cw polymorphism, a PCR-SSO oligotyping procedure was set up allowing the resolution of 29 Cw alleles. Oligotyping of a panel of 382 individuals (including 101 patients and their 272 potential unrelated donors, 5 related donors and 4 platelet donors) allowed to determine HLA-C and HLA A-B-Cw-DRB1 allelic frequencies, as well as a number of A-Cw, B-Cw, and DRB1-Cw associations. Two new HLA-Cw alleles (Cw*02023 and Cw*0707) were identified by DNA sequencing of PCR-amplified exon 2-intron 2-exon 3 amplicons. Furthermore, we determined the degree of HLA-C compatibility in 287 matched pairs that could be formed from 73 patients and their 184 potential unrelated donors compatible for HLA-AB by serology and for HLA-DRB1/ B3/B5 by oligotyping. Cw mismatches were identified in 42.1% of these pairs, and AB-subtype oligotyping showed that 30% of these Cw-incompatible pairs were also mismatched for A or B-locus subtype. The degree of HLA-C incompatibility was strongly influenced by the linkage with B alleles and by the ABDR haplotypes. Cw alleles linked with B*4403, B*5101, B18, and B62 haplotypes were frequently mismatched. Apparently high resolution DNA typing for HLA-AB does not result in full matching at locus C. Since HLA-C polymorphism is recognized by alloreactive CTLs, such incompatibilities might be as relevant as AB-subtype mismatches in clinical transplantation.
Resumo:
Proteins of the RsmA/CsrA family are global translational regulators in many bacterial species. We have determined the solution structure of a complex formed between the RsmE protein, a member of this family from Pseudomonas fluorescens, and a target RNA encompassing the ribosome-binding site of the hcnA gene. The RsmE homodimer with its two RNA-binding sites makes optimal contact with an 5'-A/UCANGGANGU/A-3' sequence in the mRNA. When tightly gripped by RsmE, the ANGGAN core folds into a loop, favoring the formation of a 3-base-pair stem by flanking nucleotides. We validated these findings by in vivo and in vitro mutational analyses. The structure of the complex explains well how, by sequestering the Shine-Dalgarno sequence, the RsmA/CsrA proteins repress translation.
Resumo:
In contrast with the low frequency of most single epitope reactive T cells in the preimmune repertoire, up to 1 of 1,000 naive CD8(+) T cells from A2(+) individuals specifically bind fluorescent A2/peptide multimers incorporating the A27L analogue of the immunodominant 26-35 peptide from the melanocyte differentiation and melanoma associated antigen Melan-A. This represents the only naive antigen-specific T cell repertoire accessible to direct analysis in humans up to date. To get insight into the molecular basis for the selection and maintenance of such an abundant repertoire, we analyzed the functional diversity of T cells composing this repertoire ex vivo at the clonal level. Surprisingly, we found a significant proportion of multimer(+) clonotypes that failed to recognize both Melan-A analogue and parental peptides in a functional assay but efficiently recognized peptides from proteins of self- or pathogen origin selected for their potential functional cross-reactivity with Melan-A. Consistent with these data, multimers incorporating some of the most frequently recognized peptides specifically stained a proportion of naive CD8(+) T cells similar to that observed with Melan-A multimers. Altogether these results indicate that the high frequency of Melan-A multimer(+) T cells can be explained by the existence of largely cross-reactive subsets of naive CD8(+) T cells displaying multiple specificities.
Resumo:
Specific monomer sequences in aromatic copolyimides are recognized through their -stacking and hydrogen-bonding interactions with a sterically and electronically complementary molecular tweezer. These interactions enable the tweezer molecule to read monomer sequences comprising up to 27 aromatic rings by multiple adjacent binding to neighboring sites on the polymer chain.
Resumo:
Sequence-specific binding is demonstrated between pyrene-based tweezer molecules and soluble, high molar mass copolyimides. The binding involves complementary pi - pi stacking interactions, polymer chain-folding, and hydrogen bonding and is extremely sensitive to the steric environment around the pyromellitimide binding-site. A detailed picture of the intermolecular interactions involved has been obtained through single-crystal X-ray studies of tweezer complexes with model diimides. Ring-current magnetic shielding of polyimide protons by the pyrene '' arms '' of the tweezer molecule induces large complexation shifts of the corresponding H-1 NMR resonances, enabling specific triplet sequences to be identified by their complexation shifts. Extended comonomer sequences (triplets of triplets in which the monomer residues differ only by the presence or absence of a methyl group) can be '' read '' by a mechanism which involves multiple binding of tweezer molecules to adjacent diimide residues within the copolymer chain. The adjacent-binding model for sequence recognition has been validated by two conceptually different sets of tweezer binding experiments. One approach compares sequence-recognition events for copolyimides having either restricted or unrestricted triple-triplet sequences, and the other makes use of copolymers containing both strongly binding and completely nonbinding diimide residues. In all cases the nature and relative proportions of triple-triplet sequences predicted by the adjacent-binding model are fully consistent with the observed H-1 NMR data.
Resumo:
A rational strategy was employed for design of an orthorhombic structure of lamivudine with maleic acid. On the basis of the lamivudine saccharinate structure reported in the literature, maleic acid was chosen to synthesize a salt with the anti-HIV drug because of the structural similarities between the salt formers. Maleic acid has an acid-ionization constant of the anti first proton and an arrangement of their hydrogen bonding functionalities similar to those of saccharin. Likewise, there is a saccharin-like conformational rigidity in maleic acid because of the hydrogen-bonded ring formation and the Z-configuration around the C=C double bond. As was conceivably predicted, lamivudine maleate assembles into a structure whose intermolecular architecture is related to that of saccharinate salt of the drug. Therefore, a molecular framework responsible for crystal assembly into a lamivudine saccharinate-like structure could be recognized in the salt formers. Furthermore, structural correlations and structure-solubility relationships were established for lamivudine maleate and saccharinate. Although there is a same molecular framework in maleic acid and saccharin, these salt formers are Structurally different in some aspects. When compared to saccharin, neither out-of-plane SO(2) oxygens nor a benzene group occur in maleic acid. Both features could be related to higher solubility of lamivudine maleate. Here, we also anticipate that multicomponent molecular crystals of lamivudine with other salt formers possessing the molecular framework responsible for crystal assembly can be engineered successfully.