981 resultados para Modern physics teaching
Resumo:
The problem of a spinless particle subject to a general mixing of vector and scalar screened Coulomb potentials in a two-dimensional world is analyzed and its bounded solutions are found. Some unusual results, including the existence of a bona fide solitary zero-eigenmode solution, are revealed for the Klein-Gordon equation. The cases of pure vector and scalar potentials, already analyzed in previous works, are obtained as particular cases.
Resumo:
The problem of a fermion subject to a general mixing of vector and scalar screened Coulomb potentials in a two-dimensional world is analyzed and quantization conditions are found.
Resumo:
For redundant second-class constraints the Dirac brackets cannot be defined and new brackets must be introduced. We prove here that the Jacobi identity for the new brackets must hold on the surface of the second-class constraints. In order to illustrate our proof we work out explicitly the cases of a fractional spin particle in 2 + 1 dimensions and the original Brink-Schwarz massless superparticle in D = 10 dimensions in a Lorentz-covariant constraints separation.
Resumo:
The problem of neutral fermions subject to an inversely linear potential is revisited. It is shown that an infinite set of bound-state solutions can be found on the condition that the fermion is embedded in an additional uniform background potential. An apparent paradox concerning the uncertainty principle is solved by introducing the concept of effective Compton wavelength.
Resumo:
The problem of fermions in the presence of a pseudoscalar plus a mixing of vector and scalar potentials which have equal or opposite signs is investigated. We explore all the possible signs of the potentials and discuss their bound-state solutions for fermions and antifermions. The cases of mixed vector and scalar Poschl-Teller-like and pseudoscalar kink-like potentials, already analyzed in previous works, are obtained as particular cases.
Resumo:
Polycrystalline La3/2Bi3/2Fe5O12 (LBIO) compound was prepared by a high-temperature solid-state reaction technique. The complex impedance of LBIO was measured over a wide temperature (i.e., room temperature to 500 C) and frequencies (i.e., 10(2)-10(6) Hz) ranges. This study takes advantage of plotting ac data simultaneously in the form of impedance and modulus spectroscopic plots and obey non-Debye type of relaxation process. The Nyquist's plot showed the presence of grain effects in the material at high temperature. The ac conductivity spectrum was found to obey Jonscher's universal power law. The dc conductivity was found to increase with rise in temperature. The activation energy of the compound was found to be 0.24 and 0.51 eV in the low and high-temperature region, respectively, for conduction process.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Neste artigo são apresentados os principais resultados obtidos em uma atividade realizada para avaliar um software hipermídia destinado ao ensino e à aprendizagem da Física. Para a realização desta pesquisa, foi desenvolvido, aplicado e avaliado um sistema hipermídia para o ensino de Gravitação, com base nas pesquisas em ensino de Ciências. Foram considerados também os princípios fundamentais que caracterizam a hipermídia enquanto linguagem que permite o acesso não-linear à informação e a apresentação desta com a utilização dos recursos gráficos, sonoros, interativos e de animação do computador, e ainda suas implicações para as práticas de ensino. A maior parte dos professores e dos estudantes envolvidos na pesquisa avaliou positivamente o software quanto a seus aspectos técnicos, pedagógicos e motivacionais. O estudo forneceu evidências de que a hipermídia contribui para a aprendizagem de Física de modo motivador e significativo para os alunos do ensino médio.
Resumo:
The belief of using experimental activities in the teaching of Physics as a strategy to produce a more efficient teaching-learning process is great among teachers and the school community. However, there are many difficulties for their implementation and when it happens they do not contribute for an improvement in class efficiency due to the method used. In this work, we developed a proposal for using these activities in Physics classes in high school, from a critical-reflexive approach in which the constant dialogue between the participants in the teaching-learning process is fundamental. The work was developed in two ways. The first, where the author/writer created an educational material and applied it in classroom and a second one, where he presented the idea to other teachers and undergraduate students from the Physics course at UFRN and IFRN (former CEFET-RN) through an extended workshop entitled "The role of experimental activities in the Physics teaching". This workshop had the duration of 60 hours and was implemented in 4 steps: i) sensitization and formation, ii) material development, iii) material implementation and iv) evaluation by teachers and students from the classes where the material was applied. The goal of this workshop was to present the approach, evaluate how the participants received the idea and how they would apply it in real situations. The results of the application in classroom allowed us to reach some conclusions. This approach was well received by the students as well as by the workshop participants. Despite some difficulties in relation to the handling of the implementation results by the workshop participants, they indicated changes in these professionals teaching practice and the introduction of experimental activities has been an important subsidy to assist them in Physics class in high school
Resumo:
In this work, the energy eigenvalues for the confined Lennard-Jones potential are calculated through the Variational Method allied to the Super symmetric Quantum Mechanics. Numerical results are obtained for different energy levels, parameters of the potential and values of confinement radius. In the limit, where this radius assumes great values, the results for the non-confined case are recovered..
Resumo:
We update the indirect bounds on anomalous triple gauge couplings coming from the non-universal one-loop contributions to the Z --> width. These bounds, which are independent of the Higgs boson mass, are in agreement with the standard model predictions for the gauge boson self-couplings since the present value of R-b agrees fairly well with the theoretical estimates. Moreover, these indirect constraints on Delta g(1)(Z) and g(5)(Z) are most stringent than the present direct bounds on these quantities, while the indirect limit on lambda(Z) is weaker than the available experimental data.
Resumo:
In this work we rederive the Lamb-Retherford energy shift for an atomic electron in the presence of a thermal radiation. Using the Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC) formalism, where physical observables are expressed as convolutions of suitable statistical functions, we construct the electromagnetic field propagator of thermo field dynamics in the Coulomb gauge in order to investigate finite temperature effects on the atomic energy levels. In the same context, we also analyze the problem of the ground state stability.
Resumo:
Top-down models for the origin of ultra high energy cosmic rays (UHECR's) propose that these events are the decay products of relic superheavy metastable particles, usually called X particles. These particles can be produced in the reheating period following the inflationary epoch of the early Universe. We obtain constraints on some parameters such as the lifetime and direct couplings of the X-particle to the inflaton field from the requirement that they are responsible for the observed UHECR flux.
Resumo:
According to the teleparallel equivalent of general relativity, curvature and torsion are two equivalent ways of describing the same gravitational field. Though equivalent, they act differently: curvature yields a geometric description, in which the concept of gravitational force is absent whereas torsion acts as a true gravitational force, quite similar to the Lorentz force of electrodynamics. As a consequence, the right-hand side of a spinless-particle equation of motion (which would represent a gravitational force) is always zero in the geometric description, but not in the teleparallel case. This means that the gravitational coupling prescription can be minimal only in the geometric case. Relying on this property, a new gravitational coupling prescription in the presence of curvature and torsion is proposed. It is constructed in such a way to preserve the equivalence between curvature and torsion, and its basic property is to be equivalent to the usual coupling prescription of general relativity. According to this view, no new physics is connected with torsion, which is just an alternative to curvature in the description of gravitation. An application of this formulation to the equations of motion of both a spinless and a spinning particle is discussed.
Resumo:
We analyse systems described by first-order actions using the Hamilton-Jacobi (HJ) formalism for singular systems. In this study we verify that generalized brackets appear in a natural way in HJ approach, showing us the existence of a symplectic structure in the phase space of this formalism.