959 resultados para Model predictive control


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work presents the study and implementation of an adaptive bilinear compensated generalized predictive controller. This work uses conventional techniques of predictive control and includes techniques of adaptive control for better results. In order to solve control problems frequently found in the chemical industry, bilinear models are considered to represent the dynamics of the studied systems. Bilinear models are simpler than general nonlinear model, however it can to represent the intrinsic not-linearities of industrial processes. The linearization of the model, by the approach to time step quasilinear , is used to allow the application of the equations of the generalized predictive controller (GPC). Such linearization, however, generates an error of prediction, which is minimized through a compensation term. The term in study is implemented in an adaptive form, due to the nonlinear relationship between the input signal and the prediction error.Simulation results show the efficiency of adaptive predictive bilinear controller in comparison with the conventional.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a control method that is effective to reduce the degenerative effects of delay time caused by a treacherous network. In present application a controlled DC motor is part of an inverted pendulum and provides the equilibrium of this system. The control of DC motor is accomplished at the distance through a treacherous network, which causes delay time in the control signal. A predictive technique is used so that it turns the system free of delay. A robust digital sliding mode controller is proposed to control the free-delay system. Due to the random conditions of the network operation, a delay time detection and accommodation strategy is also proposed. A computer simulation is shown to illustrate the design procedures and the effectiveness of the proposed method. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neste trabalho serão apresentados os resultados da avaliação experimental de uma metodologia de controle digital preditivo auto-ajustavel aplicada ao controle de tensão de um sistema de geração de energia de escala reduzida. Um estimador recursivo baseado no conhecido método de mínimos quadrados é utilizado na etapa de identificação do controlador preditivo proposto. A etapa de cálculo da lei de controle é realizada com o algoritmo Generalized Predictive Controller (GPC). A avaliação experimental foi realizada com testes de resposta ao degrau e rastreamento aplicados em diferentes condições operacionais do sistema de potência estudado. Para fins de comparação, também serão apresentados os resultados da avaliação de um controlador auto-ajustável que utiliza o método de alocação de pólos para a síntese do sinal de controle e três controladores digitais com parâmetros fixos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Linear parameter varying (LPV) control is a model-based control technique that takes into account time-varying parameters of the plant. In the case of rotating systems supported by lubricated bearings, the dynamic characteristics of the bearings change in time as a function of the rotating speed. Hence, LPV control can tackle the problem of run-up and run-down operational conditions when dynamic characteristics of the rotating system change significantly in time due to the bearings and high vibration levels occur. In this work, the LPV control design for a flexible shaft supported by plain journal bearings is presented. The model used in the LPV control design is updated from unbalance response experimental results and dynamic coefficients for the entire range of rotating speeds are obtained by numerical optimization. Experimental implementation of the designed LPV control resulted in strong reduction of vibration amplitudes when crossing the critical speed, without affecting system behavior in sub- or supercritical speeds. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In power electronic basedmicrogrids, the computational requirements needed to implement an optimized online control strategy can be prohibitive. The work presented in this dissertation proposes a generalized method of derivation of geometric manifolds in a dc microgrid that is based on the a-priori computation of the optimal reactions and trajectories for classes of events in a dc microgrid. The proposed states are the stored energies in all the energy storage elements of the dc microgrid and power flowing into them. It is anticipated that calculating a large enough set of dissimilar transient scenarios will also span many scenarios not specifically used to develop the surface. These geometric manifolds will then be used as reference surfaces in any type of controller, such as a sliding mode hysteretic controller. The presence of switched power converters in microgrids involve different control actions for different system events. The control of the switch states of the converters is essential for steady state and transient operations. A digital memory look-up based controller that uses a hysteretic sliding mode control strategy is an effective technique to generate the proper switch states for the converters. An example dcmicrogrid with three dc-dc boost converters and resistive loads is considered for this work. The geometric manifolds are successfully generated for transient events, such as step changes in the loads and the sources. The surfaces corresponding to a specific case of step change in the loads are then used as reference surfaces in an EEPROM for experimentally validating the control strategy. The required switch states corresponding to this specific transient scenario are programmed in the EEPROM as a memory table. This controls the switching of the dc-dc boost converters and drives the system states to the reference manifold. In this work, it is shown that this strategy effectively controls the system for a transient condition such as step changes in the loads for the example case.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adaptive systems use feedback as a key strategy to cope with uncertainty and change in their environments. The information fed back from the sensorimotor loop into the control architecture can be used to change different elements of the controller at four different levels: parameters of the control model, the control model itself, the functional organization of the agent and the functional components of the agent. The complexity of such a space of potential configurations is daunting. The only viable alternative for the agent ?in practical, economical, evolutionary terms? is the reduction of the dimensionality of the configuration space. This reduction is achieved both by functionalisation —or, to be more precise, by interface minimization— and by patterning, i.e. the selection among a predefined set of organisational configurations. This last analysis let us state the central problem of how autonomy emerges from the integration of the cognitive, emotional and autonomic systems in strict functional terms: autonomy is achieved by the closure of functional dependency. In this paper we will show a general model of how the emotional biological systems operate following this theoretical analysis and how this model is also of applicability to a wide spectrum of artificial systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adaptive agents use feedback as a key strategy to cope with un- certainty and change in their environments. The information fed back from the sensorimotor loop into the control subsystem can be used to change four different elements of the controller: parameters associated to the control model, the control model itself, the functional organization of the agent and the functional realization of the agent. There are many change alternatives and hence the complexity of the agent’s space of potential configurations is daunting. The only viable alternative for space- and time-constrained agents —in practical, economical, evolutionary terms— is to achieve a reduction of the dimensionality of this configuration space. Emotions play a critical role in this reduction. The reduction is achieved by func- tionalization, interface minimization and by patterning, i.e. by selection among a predefined set of organizational configurations. This analysis lets us state how autonomy emerges from the integration of cognitive, emotional and autonomic systems in strict functional terms: autonomy is achieved by the closure of functional dependency. Emotion-based morphofunctional systems are able to exhibit complex adaptation patterns at a reduced cognitive cost. In this article we show a general model of how emotion supports functional adaptation and how the emotional biological systems operate following this theoretical model. We will also show how this model is also of applicability to the construction of a wide spectrum of artificial systems1.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Devido à crescente implementação do Controle Preditivo baseado em Modelo (MPC) em outros processos além de refino e plantas petroquímicas, que geralmente possuem múltiplas entradas e saídas, tem-se um aumento na demanda de modelos gerados por identificação de sistemas. Identificar modelos que representem fielmente a dinâmica do processo depende em grande medida das características dos sinais de excitação dos processos. Assim, o foco deste trabalho é realizar um estudo dos sinais típicos usados em identificação de sistemas, PRBS e GBN, em uma abordagem multivariável. O estudo feito neste trabalho parte das características da geração dos sinais individualmente, depois é feita uma análise de correlação cruzada dos sinais de entrada, observando a influência desta sobre os resultados de identificação. Evitar uma alta correlação entre os sinais de entrada permite determinar o efeito de cada entrada sobre a saída no processo de identificação. Um ponto importante no projeto de sinais de identificação de sistemas multivariáveis é a frequência dos mesmos para conseguir excitar os processos nas regiões de frequência de operação normal e assim extrair a maior informação dinâmica possível do processo. As características estudadas são avaliadas por meio de testes em três plantas simuladas diferentes, categorizadas como mal, medianamente e bem condicionadas. Estas implementações foram feitas usando sinais GBN e PRBS de diferentes frequências. Expressões para a caracterização dos sinais de excitação foram avaliadas identificando os processos em malha aberta e malha fechada. Para as plantas mal condicionadas foram implementados sinais compostos por uma parte completamente correlacionada e uma parte não-correlacionada, conhecido como método de dois passos. Finalmente são realizados experimentos de identificação em uma aplicação em tempo real de uma planta piloto de neutralização de pH. Os testes realizados na planta foram feitos visando avaliar os estudos de frequência e correlação em uma aplicaficção real. Os resultados mostram que a condição de sinais completamente descorrelacionados n~ao deve ser cumprida para ter bons resultados nos modelos identificados. Isto permite ter mais exibilidade na geração do conjunto de sinais de excitação.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The numerical solution of stochastic differential equations (SDEs) has been focussed recently on the development of numerical methods with good stability and order properties. These numerical implementations have been made with fixed stepsize, but there are many situations when a fixed stepsize is not appropriate. In the numerical solution of ordinary differential equations, much work has been carried out on developing robust implementation techniques using variable stepsize. It has been necessary, in the deterministic case, to consider the best choice for an initial stepsize, as well as developing effective strategies for stepsize control-the same, of course, must be carried out in the stochastic case. In this paper, proportional integral (PI) control is applied to a variable stepsize implementation of an embedded pair of stochastic Runge-Kutta methods used to obtain numerical solutions of nonstiff SDEs. For stiff SDEs, the embedded pair of the balanced Milstein and balanced implicit method is implemented in variable stepsize mode using a predictive controller for the stepsize change. The extension of these stepsize controllers from a digital filter theory point of view via PI with derivative (PID) control will also be implemented. The implementations show the improvement in efficiency that can be attained when using these control theory approaches compared with the regular stepsize change strategy. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims The aims of this study are to develop and validate a measure to screen for a range of gambling-related cognitions (GRC) in gamblers. Design and participants A total of 968 volunteers were recruited from a community-based population. They were divided randomly into two groups. Principal axis factoring with varimax rotation was performed on group one and confirmatory factor analysis (CFA) was used on group two to confirm the best-fitted solution. Measurements The Gambling Related Cognition Scale (GRCS) was developed for this study and the South Oaks Gambling Screen (SOGS), the Motivation Towards Gambling Scale (MTGS) and the Depression Anxiety Stress Scale (DASS-2 1) were used for validation. Findings Exploratory factor analysis performed using half the sample indicated five factors, which included interpretative control/bias (GRCS-IB), illusion of control (GRCS-IC), predictive control (GRCS-PC), gambling-related expectancies (GRCS-GE) and a perceived inability to stop gambling (GRCS-IS). These accounted for 70% of the total variance. Using the other half of the sample, CFA confirmed that the five-factor solution fitted the data most effectively. Cronbach's alpha coefficients for the factors ranged from 0.77 to 0.91, and 0.93 for the overall scale. Conclusions This paper demonstrated that the 23-item GRCS has good psychometric properties and thus is a useful instrument for identifying GRC among non-clinical gamblers. It provides the first step towards devising/adapting similar tools for problem gamblers as well as developing more specialized instruments to assess particular domains of GRC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Calibration of a groundwater model requires that hydraulic properties be estimated throughout a model domain. This generally constitutes an underdetermined inverse problem, for which a Solution can only be found when some kind of regularization device is included in the inversion process. Inclusion of regularization in the calibration process can be implicit, for example through the use of zones of constant parameter value, or explicit, for example through solution of a constrained minimization problem in which parameters are made to respect preferred values, or preferred relationships, to the degree necessary for a unique solution to be obtained. The cost of uniqueness is this: no matter which regularization methodology is employed, the inevitable consequence of its use is a loss of detail in the calibrated field. This, ill turn, can lead to erroneous predictions made by a model that is ostensibly well calibrated. Information made available as a by-product of the regularized inversion process allows the reasons for this loss of detail to be better understood. In particular, it is easily demonstrated that the estimated value for an hydraulic property at any point within a model domain is, in fact, a weighted average of the true hydraulic property over a much larger area. This averaging process causes loss of resolution in the estimated field. Where hydraulic conductivity is the hydraulic property being estimated, high averaging weights exist in areas that are strategically disposed with respect to measurement wells, while other areas may contribute very little to the estimated hydraulic conductivity at any point within the model domain, this possibly making the detection of hydraulic conductivity anomalies in these latter areas almost impossible. A study of the post-calibration parameter field covariance matrix allows further insights into the loss of system detail incurred through the calibration process to be gained. A comparison of pre- and post-calibration parameter covariance matrices shows that the latter often possess a much smaller spectral bandwidth than the former. It is also demonstrated that, as all inevitable consequence of the fact that a calibrated model cannot replicate every detail of the true system, model-to-measurement residuals can show a high degree of spatial correlation, a fact which must be taken into account when assessing these residuals either qualitatively, or quantitatively in the exploration of model predictive uncertainty. These principles are demonstrated using a synthetic case in which spatial parameter definition is based oil pilot points, and calibration is Implemented using both zones of piecewise constancy and constrained minimization regularization. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La riduzione dei consumi di combustibili fossili e lo sviluppo di tecnologie per il risparmio energetico sono una questione di centrale importanza sia per l’industria che per la ricerca, a causa dei drastici effetti che le emissioni di inquinanti antropogenici stanno avendo sull’ambiente. Mentre un crescente numero di normative e regolamenti vengono emessi per far fronte a questi problemi, la necessità di sviluppare tecnologie a basse emissioni sta guidando la ricerca in numerosi settori industriali. Nonostante la realizzazione di fonti energetiche rinnovabili sia vista come la soluzione più promettente nel lungo periodo, un’efficace e completa integrazione di tali tecnologie risulta ad oggi impraticabile, a causa sia di vincoli tecnici che della vastità della quota di energia prodotta, attualmente soddisfatta da fonti fossili, che le tecnologie alternative dovrebbero andare a coprire. L’ottimizzazione della produzione e della gestione energetica d’altra parte, associata allo sviluppo di tecnologie per la riduzione dei consumi energetici, rappresenta una soluzione adeguata al problema, che può al contempo essere integrata all’interno di orizzonti temporali più brevi. L’obiettivo della presente tesi è quello di investigare, sviluppare ed applicare un insieme di strumenti numerici per ottimizzare la progettazione e la gestione di processi energetici che possa essere usato per ottenere una riduzione dei consumi di combustibile ed un’ottimizzazione dell’efficienza energetica. La metodologia sviluppata si appoggia su un approccio basato sulla modellazione numerica dei sistemi, che sfrutta le capacità predittive, derivanti da una rappresentazione matematica dei processi, per sviluppare delle strategie di ottimizzazione degli stessi, a fronte di condizioni di impiego realistiche. Nello sviluppo di queste procedure, particolare enfasi viene data alla necessità di derivare delle corrette strategie di gestione, che tengano conto delle dinamiche degli impianti analizzati, per poter ottenere le migliori prestazioni durante l’effettiva fase operativa. Durante lo sviluppo della tesi il problema dell’ottimizzazione energetica è stato affrontato in riferimento a tre diverse applicazioni tecnologiche. Nella prima di queste è stato considerato un impianto multi-fonte per la soddisfazione della domanda energetica di un edificio ad uso commerciale. Poiché tale sistema utilizza una serie di molteplici tecnologie per la produzione dell’energia termica ed elettrica richiesta dalle utenze, è necessario identificare la corretta strategia di ripartizione dei carichi, in grado di garantire la massima efficienza energetica dell’impianto. Basandosi su un modello semplificato dell’impianto, il problema è stato risolto applicando un algoritmo di Programmazione Dinamica deterministico, e i risultati ottenuti sono stati comparati con quelli derivanti dall’adozione di una più semplice strategia a regole, provando in tal modo i vantaggi connessi all’adozione di una strategia di controllo ottimale. Nella seconda applicazione è stata investigata la progettazione di una soluzione ibrida per il recupero energetico da uno scavatore idraulico. Poiché diversi layout tecnologici per implementare questa soluzione possono essere concepiti e l’introduzione di componenti aggiuntivi necessita di un corretto dimensionamento, è necessario lo sviluppo di una metodologia che permetta di valutare le massime prestazioni ottenibili da ognuna di tali soluzioni alternative. Il confronto fra i diversi layout è stato perciò condotto sulla base delle prestazioni energetiche del macchinario durante un ciclo di scavo standardizzato, stimate grazie all’ausilio di un dettagliato modello dell’impianto. Poiché l’aggiunta di dispositivi per il recupero energetico introduce gradi di libertà addizionali nel sistema, è stato inoltre necessario determinare la strategia di controllo ottimale dei medesimi, al fine di poter valutare le massime prestazioni ottenibili da ciascun layout. Tale problema è stato di nuovo risolto grazie all’ausilio di un algoritmo di Programmazione Dinamica, che sfrutta un modello semplificato del sistema, ideato per lo scopo. Una volta che le prestazioni ottimali per ogni soluzione progettuale sono state determinate, è stato possibile effettuare un equo confronto fra le diverse alternative. Nella terza ed ultima applicazione è stato analizzato un impianto a ciclo Rankine organico (ORC) per il recupero di cascami termici dai gas di scarico di autovetture. Nonostante gli impianti ORC siano potenzialmente in grado di produrre rilevanti incrementi nel risparmio di combustibile di un veicolo, è necessario per il loro corretto funzionamento lo sviluppo di complesse strategie di controllo, che siano in grado di far fronte alla variabilità della fonte di calore per il processo; inoltre, contemporaneamente alla massimizzazione dei risparmi di combustibile, il sistema deve essere mantenuto in condizioni di funzionamento sicure. Per far fronte al problema, un robusto ed efficace modello dell’impianto è stato realizzato, basandosi sulla Moving Boundary Methodology, per la simulazione delle dinamiche di cambio di fase del fluido organico e la stima delle prestazioni dell’impianto. Tale modello è stato in seguito utilizzato per progettare un controllore predittivo (MPC) in grado di stimare i parametri di controllo ottimali per la gestione del sistema durante il funzionamento transitorio. Per la soluzione del corrispondente problema di ottimizzazione dinamica non lineare, un algoritmo basato sulla Particle Swarm Optimization è stato sviluppato. I risultati ottenuti con l’adozione di tale controllore sono stati confrontati con quelli ottenibili da un classico controllore proporzionale integrale (PI), mostrando nuovamente i vantaggi, da un punto di vista energetico, derivanti dall’adozione di una strategia di controllo ottima.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dans cette thèse, nous abordons le contrôle moteur du mouvement du coude à travers deux approches expérimentales : une première étude psychophysique a été effectuée chez les sujets humains, et une seconde implique des enregistrements neurophysiologiques chez le singe. Nous avons recensé plusieurs aspects non résolus jusqu’à présent dans l’apprentissage moteur, particulièrement concernant l’interférence survenant lors de l’adaptation à deux ou plusieurs champs de force anti-corrélés. Nous avons conçu un paradigme où des stimuli de couleur aident les sujets à prédire la nature du champ de force externe actuel avant qu’ils ne l’expérimentent physiquement durant des mouvements d’atteinte. Ces connaissances contextuelles faciliteraient l’adaptation à des champs de forces en diminuant l’interférence. Selon le modèle computationnel de l’apprentissage moteur MOSAIC (MOdular Selection And Identification model for Control), les stimuli de couleur aident les sujets à former « un modèle interne » de chaque champ de forces, à s’en rappeler et à faire la transition entre deux champs de force différents, sans interférence. Dans l’expérience psychophysique, quatre groupes de sujets humains ont exécuté des mouvements de flexion/extension du coude contre deux champs de forces. Chaque force visqueuse était associée à une couleur de l’écran de l’ordinateur et les deux forces étaient anti-corrélées : une force résistante (Vr) a été associée à la couleur rouge de l’écran et l’autre, assistante (Va), à la couleur verte de l’écran. Les deux premiers groupes de sujets étaient des groupes témoins : la couleur de l’écran changeait à chaque bloc de 4 essais, tandis que le champ de force ne changeait pas. Les sujets du groupe témoin Va ne rencontraient que la force assistante Va et les sujets du groupe témoin Vr performaient leurs mouvements uniquement contre une force résistante Vr. Ainsi, dans ces deux groupes témoins, les stimuli de couleur n’étaient pas pertinents pour adapter le mouvement et les sujets ne s’adaptaient qu’à une seule force (Va ou Vr). Dans les deux groupes expérimentaux, cependant, les sujets expérimentaient deux champs de forces différents dans les différents blocs d’essais (4 par bloc), associés à ces couleurs. Dans le premier groupe expérimental (groupe « indice certain », IC), la relation entre le champ de force et le stimulus (couleur de l’écran) était constante. La couleur rouge signalait toujours la force Vr tandis que la force Va était signalée par la couleur verte. L’adaptation aux deux forces anti-corrélées pour le groupe IC s’est avérée significative au cours des 10 jours d’entraînement et leurs mouvements étaient presque aussi bien ajustés que ceux des deux groupes témoins qui n’avaient expérimenté qu’une seule des deux forces. De plus, les sujets du groupe IC ont rapidement démontré des changements adaptatifs prédictifs dans leurs sorties motrices à chaque changement de couleur de l’écran, et ceci même durant leur première journée d’entraînement. Ceci démontre qu’ils pouvaient utiliser les stimuli de couleur afin de se rappeler de la commande motrice adéquate. Dans le deuxième groupe expérimental, la couleur de l’écran changeait régulièrement de vert à rouge à chaque transition de blocs d’essais, mais le changement des champs de forces était randomisé par rapport aux changements de couleur (groupe « indice-incertain », II). Ces sujets ont pris plus de temps à s’adapter aux champs de forces que les 3 autres groupes et ne pouvaient pas utiliser les stimuli de couleurs, qui n’étaient pas fiables puisque non systématiquement reliés aux champs de forces, pour faire des changements prédictifs dans leurs sorties motrices. Toutefois, tous les sujets de ce groupe ont développé une stratégie ingénieuse leur permettant d’émettre une réponse motrice « par défaut » afin de palper ou de sentir le type de la force qu’ils allaient rencontrer dans le premier essai de chaque bloc, à chaque changement de couleur. En effet, ils utilisaient la rétroaction proprioceptive liée à la nature du champ de force afin de prédire la sortie motrice appropriée pour les essais qui suivent, jusqu’au prochain changement de couleur d’écran qui signifiait la possibilité de changement de force. Cette stratégie était efficace puisque la force demeurait la même dans chaque bloc, pendant lequel la couleur de l’écran restait inchangée. Cette étude a démontré que les sujets du groupe II étaient capables d’utiliser les stimuli de couleur pour extraire des informations implicites et explicites nécessaires à la réalisation des mouvements, et qu’ils pouvaient utiliser ces informations pour diminuer l’interférence lors de l’adaptation aux forces anti-corrélées. Les résultats de cette première étude nous ont encouragés à étudier les mécanismes permettant aux sujets de se rappeler d’habiletés motrices multiples jumelées à des stimuli contextuels de couleur. Dans le cadre de notre deuxième étude, nos expériences ont été effectuées au niveau neuronal chez le singe. Notre but était alors d’élucider à quel point les neurones du cortex moteur primaire (M1) peuvent contribuer à la compensation d’un large éventail de différentes forces externes durant un mouvement de flexion/extension du coude. Par cette étude, nous avons testé l’hypothèse liée au modèle MOSAIC, selon laquelle il existe plusieurs modules contrôleurs dans le cervelet qui peuvent prédire chaque contexte et produire un signal de sortie motrice approprié pour un nombre restreint de conditions. Selon ce modèle, les neurones de M1 recevraient des entrées de la part de plusieurs contrôleurs cérébelleux spécialisés et montreraient ensuite une modulation appropriée de la réponse pour une large variété de conditions. Nous avons entraîné deux singes à adapter leurs mouvements de flexion/extension du coude dans le cadre de 5 champs de force différents : un champ nul ne présentant aucune perturbation, deux forces visqueuses anti-corrélées (assistante et résistante) qui dépendaient de la vitesse du mouvement et qui ressemblaient à celles utilisées dans notre étude psychophysique chez l’homme, une force élastique résistante qui dépendait de la position de l’articulation du coude et, finalement, un champ viscoélastique comportant une sommation linéaire de la force élastique et de la force visqueuse. Chaque champ de force était couplé à une couleur d’écran de l’ordinateur, donc nous avions un total de 5 couleurs différentes associées chacune à un champ de force (relation fixe). Les singes étaient bien adaptés aux 5 conditions de champs de forces et utilisaient les stimuli contextuels de couleur pour se rappeler de la sortie motrice appropriée au contexte de forces associé à chaque couleur, prédisant ainsi leur sortie motrice avant de sentir les effets du champ de force. Les enregistrements d’EMG ont permis d’éliminer la possibilité de co-contractions sous-tendant ces adaptations, étant donné que le patron des EMG était approprié pour compenser chaque condition de champ de force. En parallèle, les neurones de M1 ont montré des changements systématiques dans leurs activités, sur le plan unitaire et populationnel, dans chaque condition de champ de force, signalant les changements requis dans la direction, l’amplitude et le décours temporel de la sortie de force musculaire nécessaire pour compenser les 5 conditions de champs de force. Les changements dans le patron de réponse pour chaque champ de force étaient assez cohérents entre les divers neurones de M1, ce qui suggère que la plupart des neurones de M1 contribuent à la compensation de toutes les conditions de champs de force, conformément aux prédictions du modèle MOSAIC. Aussi, cette modulation de l’activité neuronale ne supporte pas l’hypothèse d’une organisation fortement modulaire de M1.