878 resultados para Model evaluation
Resumo:
This paper describes the employment of two experienced graziers as consultants to apply and evaluate a model for calculating 'safe' long-term grazing capacities of individual properties. The model was based on ecological principles and entailed estimates of average annual forage grown (kglha) on the different land systems on each property and the calculation of the number of livestock (dry sheep equivalents, DSE) required to 'safely' utilise this forage. The grazier consultants applied and evaluated the 'safe' grazing capacity model on 20 properties of their choosing. For evaluation, model results were compared with; (a) the Department of Lands rated carrying capacities for those properties and (b) the grazing capacity assessed independently by the owners of those properties. For the 20 properties, the average 'safe' grazing capacity calculated by the model (21.0 DSE/kmZ) was 8% lighter than the average of the owner assessed capacities (22.7 DSE/kmZ), which in tum was 37% lighter than the average of the pre-1989 Department of Lands rated carrying capacity (31.0 DSE/kmZ). The grazing land management and administrative implications of these results and the role graziers played as consultants are discussed.
Resumo:
The results of drying trials show that vacuum drying produces material of the same or better quality than is currently being produced by conventional methods within 41 to 66 % of the drying time, depending on the species. Economic analysis indicates positive or negative results depending on the species and the size of drying operation. Definite economic benefits exist by vacuum drying over conventional drying for all operation sizes, in terms of drying quality, time and economic viability, for E. marginata and E. pilularis. The same applies for vacuum drying C. citriodora and E. obliqua in larger drying operations (kiln capacity 50 m3 or above), but not for smaller operations at this stage. Further schedule refinement has the ability to reduce drying times further and may improve the vacuum drying viability of the latter species in smaller operations.
Resumo:
Bovine genital campylobacteriosis (BGC), caused by Campylobacter fetus subsp. venerealis, is associated with production losses in cattle worldwide. This study aimed to develop a reliable BGC guinea pig model to facilitate future studies of pathogenicity, abortion mechanisms and vaccine efficacy. Seven groups of five pregnant guinea pigs (1 control per group) were inoculated with one of three strains via intra-peritoneal (IP) or intra-vaginal routes. Samples were examined using culture, PCR and histology. Abortions ranged from 0 to 100 and re-isolation of causative bacteria from sampled sites varied with strain, dose of bacteria and time to abortion. Histology indicated metritis and placentitis, suggesting that the bacteria induce inflammation, placental detachment and subsequent abortion. Variation of virulence between strains was observed and determined by culture and abortion rates. IP administration of C. fetus subsp. venerealis to pregnant guinea pigs is a promising small animal model for the investigation of BGC abortion.
Resumo:
A number of analogues of diaryl dihydropyrazole-3-carboxamides have been synthesized. Their activities were evaluated for appetite suppression and body weight reduction in animal models. Depending on the chemical modification of the selected dihydropyrazole scaffold, the lead compoundsthe bisulfate salt of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 26 and the bisulfate salt of (−)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 30showed significant body weight reduction in vivo, which is attributed to their CB1 antagonistic activity and exhibited a favorable pharmacokinetic profile. The molecular modeling studies also showed interactions of two isomers of (±)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid morpholin-4-ylamide 9 with CB1 receptor in the homology model similar to those of N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (rimonabant) 1 and 4S-(−)-3-(4-chlorophenyl)-N-methyl-N‘-[(4-chlorophenyl)-sulfonyl]-4-phenyl-4,5-dihydro-1H-pyrazole-1-carboxamidine (SLV-319) 2.
Resumo:
We extend the modeling heuristic of (Harsha et al. 2006. In IEEE IWQoS 06, pp 178 - 187) to evaluate the performance of an IEEE 802.11e infrastructure network carrying packet telephone calls, streaming video sessions and TCP controlled file downloads, using Enhanced Distributed Channel Access (EDCA). We identify the time boundaries of activities on the channel (called channel slot boundaries) and derive a Markov Renewal Process of the contending nodes on these epochs. This is achieved by the use of attempt probabilities of the contending nodes as those obtained from the saturation fixed point analysis of (Ramaiyan et al. 2005. In Proceedings ACM Sigmetrics, `05. Journal version accepted for publication in IEEE TON). Regenerative analysis on this MRP yields the desired steady state performance measures. We then use the MRP model to develop an effective bandwidth approach for obtaining a bound on the size of the buffer required at the video queue of the AP, such that the streaming video packet loss probability is kept to less than 1%. The results obtained match well with simulations using the network simulator, ns-2. We find that, with the default IEEE 802.11e EDCA parameters for access categories AC 1, AC 2 and AC 3, the voice call capacity decreases if even one streaming video session and one TCP file download are initiated by some wireless station. Subsequently, reducing the voice calls increases the video downlink stream throughput by 0.38 Mbps and file download capacity by 0.14 Mbps, for every voice call (for the 11 Mbps PHY). We find that a buffer size of 75KB is sufficient to ensure that the video packet loss probability at the QAP is within 1%.
Resumo:
In the context of the IEEE 802.11e standard for WLANs, we provide an analytical model for obtaining the maximum number of VoIP calls that can be supported on HCCA, such that the delay QoS constraint of the accepted calls is met, when TCP downloads are coexistent on EDCA. In this scenario, we derive the TCP download throughput by using an analytical model for the case where only TCP sessions are present in the WLAN. We show that the analytical model for combined voice and TCP transfers provides accurate results in comparison with simulations (using ns-2).
Resumo:
A new class of nets, called S-nets, is introduced for the performance analysis of scheduling algorithms used in real-time systems Deterministic timed Petri nets do not adequately model the scheduling of resources encountered in real-time systems, and need to be augmented with resource places and signal places, and a scheduler block, to facilitate the modeling of scheduling algorithms. The tokens are colored, and the transition firing rules are suitably modified. Further, the concept of transition folding is used, to get intuitively simple models of multiframe real-time systems. Two generic performance measures, called �load index� and �balance index,� which characterize the resource utilization and the uniformity of workload distribution, respectively, are defined. The utility of S-nets for evaluating heuristic-based scheduling schemes is illustrated by considering three heuristics for real-time scheduling. S-nets are useful in tuning the hardware configuration and the underlying scheduling policy, so that the system utilization is maximized, and the workload distribution among the computing resources is balanced.
Resumo:
A modification of the jogged-screw model has been adopted recently by the authors to explain observations of 1/2[110]-type jogged-screw dislocations in equiaxed Ti-48Al under creep conditions. The aim of this study has been to verify and validate the parameters and functional dependencies that have been assumed in this previous work. The original solution has been reformulated to take into account the finite length of the moving jog. This is a better approximation of the tall jog. The substructural model parameters have been further investigated in light of the Finite Length Moving Line (FLML) source approximation. The original model assumes that the critical jog height (beyond which the jog is not dragged) is inversely proportional to the applied stress. By accounting for the fact that there are three competing mechanisms (jog dragging, dipole dragging, dipole bypass) possible, we can arrive at a modified critical jog height. The critical jog height was found to be more strongly stress dependent than assumed previously. The original model assumes the jog spacing to be invariant over the stress range. However, dynamic simulation using a line tension model has shown that the jog spacing is inversely proportional to the applied stress. This has also been confirmed by TEM measurements of jog spacings over a range of stresses. Taylor's expression assumed previously to provide the dependence of dislocation density on the applied stress, has now been confirmed by actual dislocation density measurements. Combining all of these parameters and dependencies, derived both from experiment and theory, leads to an excellent prediction of creep rates and stress exponents. The further application of this model to other materials, and the important role of atomistic and dislocation dynamics simulations in its continued development is also discussed.
Resumo:
Even though satellite observations are the most effective means to gather global information in a short span of time, the challenges in this field still remain over continental landmass, despite most of the aerosol sources being land-based. This is a hurdle in global and regional aerosol climate forcing assessment. Retrieval of aerosol properties over land is complicated due to irregular terrain characteristics and the high and largely uncertain surface reflection which acts as `noise' to the much smaller amount of radiation scattered by aerosols, which is the `signal'. In this paper, we describe a satellite sensor the - `Aerosol Satellite (AEROSAT)', which is capable of retrieving aerosols over land with much more accuracy and reduced dependence on models. The sensor, utilizing a set of multi-spectral and multi-angle measurements of polarized components of radiation reflected from the Earth's surface, along with measurements of thermal infrared broadband radiance, results in a large reduction of the `noise' component (compared to the `signal). A conceptual engineering model of AEROSAT has been designed, developed and used to measure the land-surface features in the visible spectral band. Analysing the received signals using a polarization radiative transfer approach, we demonstrate the superiority of this method. It is expected that satellites carrying sensors following the AEROSAT concept would be `self-sufficient', to obtain all the relevant information required for aerosol retrieval from its own measurements.
Resumo:
In this study, we applied the integration methodology developed in the companion paper by Aires (2014) by using real satellite observations over the Mississippi Basin. The methodology provides basin-scale estimates of the four water budget components (precipitation P, evapotranspiration E, water storage change Delta S, and runoff R) in a two-step process: the Simple Weighting (SW) integration and a Postprocessing Filtering (PF) that imposes the water budget closure. A comparison with in situ observations of P and E demonstrated that PF improved the estimation of both components. A Closure Correction Model (CCM) has been derived from the integrated product (SW+PF) that allows to correct each observation data set independently, unlike the SW+PF method which requires simultaneous estimates of the four components. The CCM allows to standardize the various data sets for each component and highly decrease the budget residual (P - E - Delta S - R). As a direct application, the CCM was combined with the water budget equation to reconstruct missing values in any component. Results of a Monte Carlo experiment with synthetic gaps demonstrated the good performances of the method, except for the runoff data that has a variability of the same order of magnitude as the budget residual. Similarly, we proposed a reconstruction of Delta S between 1990 and 2002 where no Gravity Recovery and Climate Experiment data are available. Unlike most of the studies dealing with the water budget closure at the basin scale, only satellite observations and in situ runoff measurements are used. Consequently, the integrated data sets are model independent and can be used for model calibration or validation.
Resumo:
The inversion of canopy reflectance models is widely used for the retrieval of vegetation properties from remote sensing. This study evaluates the retrieval of soybean biophysical variables of leaf area index, leaf chlorophyll content, canopy chlorophyll content, and equivalent leaf water thickness from proximal reflectance data integrated broadbands corresponding to moderate resolution imaging spectroradiometer, thematic mapper, and linear imaging self scanning sensors through inversion of the canopy radiative transfer model, PROSAIL. Three different inversion approaches namely the look-up table, genetic algorithm, and artificial neural network were used and performances were evaluated. Application of the genetic algorithm for crop parameter retrieval is a new attempt among the variety of optimization problems in remote sensing which have been successfully demonstrated in the present study. Its performance was as good as that of the look-up table approach and the artificial neural network was a poor performer. The general order of estimation accuracy for para-meters irrespective of inversion approaches was leaf area index > canopy chlorophyll content > leaf chlorophyll content > equivalent leaf water thickness. Performance of inversion was comparable for broadband reflectances of all three sensors in the optical region with insignificant differences in estimation accuracy among them.
Resumo:
Extensive and indiscriminate use of synthetic compounds and natural compounds obtained from plant sources have resulted in serious threats to the aquatic ecosystem and human health. Aqueous extract of the root of the plant, Milletia pachycarpa Benth, is currently used for killing fish in the state of Manipur, India. Moreover, this plant is also used as traditional medicine in this region. Although it is widely used in traditional medicine, there is limited information available regarding the adverse effects and mechanism underlying its toxicity. This study examined the effects of exposure to aqueous extract of M. pachycarpa (AEMP) on early embryonic development of zebrafish embryos and mechanisms underlying toxicity. Zebrafish embryos treated with different concentrations of the AEMP produced embryonic lethality and developmental defects. The 96-hr-LC50 of AEMP was found to be 4.276 mu g/mL. Further, multiple developmental abnormalities such as pericardial edema, yolk sac edema, spinal curvature, swim bladder deflation, decreased heart rate, and delayed hatching were also observed in a dose-dependent manner. Zebrafish embryo showing moderate-to-severe developmental defects following AEMP exposure cannot swim properly. Further, this study examined oxidative stress and apoptosis in embryos exposed to AEMP. Enhanced production of ROS and apoptosis was found in brain, trunk, and tail of zebrafish embryos treated with AEMP. Data suggest that oxidative stress and apoptosis are associated with AEMP-induced embryonic lethality and developmental toxicity in zebrafish embryos.
Resumo:
Background: Fentanyl is widely used off-label in NICU. Our aim was to investigate its cerebral, cardiovascular and pulmonary effects as well as pharmacokinetics in an experimental model for neonates. Methods: Fentanyl (5 mu g/kg bolus immediately followed by a 90 minute infusion of 3 mu g/kg/h) was administered to six mechanically ventilated newborn piglets. Cardiovascular, ventilation, pulmonary and oxygenation indexes as well as brain activity were monitored from T = 0 up to the end of experiments (T = 225-300 min). Also plasma samples for quantification of fentanyl were drawn. Results: A "reliable degree of sedation" was observed up to T = 210-240 min, consistent with the selected dosing regimen and the observed fentanyl plasma levels. Unlike cardiovascular parameters, which were unmodified except for an increasing trend in heart rate, some of the ventilation and oxygenation indexes as well as brain activity were significantly altered. The pulmonary and brain effects of fentanyl were mostly recovered from T = 210 min to the end of experiment. Conclusion: The newborn piglet was shown to be a suitable experimental model for studying fentanyl disposition as well as respiratory and cardiovascular effects in human neonates. Therefore, it could be extremely useful for further investigating the drug behaviour under pathophysiological conditions.