963 resultados para Mode-matched Thermal lens
Resumo:
Differential scanning calorimetry (DSC) has been used to obtain kinetic and nucleation parameters for polymer crystallization under a non-isothermal mode of operation. The available isothermal nucleation growth-rate equation has been modified for non-isothermal kinetic analysis. The values of the nucleation constant (K g ) and surface free energies (sgr, sgr e ) have been obtained for i-polybutene-1, i-polypropylene, poly(L-lactic acid), and polyoxymethylene and are compared with those obtained from isothermal kinetic analysis; a good agreement in both is seen.
Resumo:
Straylight, lens yellowing and ocular aberrations were assessed in a group of people with type 1 diabetes and in an age matched control group. Most of the former had low levels of neuropathy. Relative to the control group, the type 1 diabetes group demonstrated greater straylight, greater lens yellowing, and differences in some higher-order aberration co-efficients without significant increase in root-mean-square higher-order aberrations. Differences between groups did not increase significantly with age. The results are similar to the findings for ocular biometry reported previously for this group of participants, and suggest that age-related changes in the optics of the eyes of people with well-controlled diabetes need not be accelerated.
Resumo:
Purpose: To compare lens dimensions and refractive index distributions in type 1 diabetes and age-matched control groups. Methods: There were 17 participants with type 1 diabetes, consisting of two subgroups (7 young [23 ± 4 years] and 10 older [54 ± 4 years] participants), with 23 controls (13 young, 24 ± 4 years; 10 older, 55 ± 4 years). For each participant, one eye was tested with relaxed accommodation. A 3T clinical magnetic resonance imaging scanner was used to image the eye, employing a multiple spin echo (MSE) sequence to determine lens dimensions and refractive index profiles along the equatorial and axial directions. Results: The diabetes group had significantly smaller lens equatorial diameters and larger lens axial thicknesses than the control group (diameter mean ± 95% confidence interval [CI]: diabetes group 8.65 ± 0.26 mm, control group 9.42 ± 0.18 mm; axial thickness: diabetes group 4.33 ± 0.30 mm, control group 3.80 ± 0.14 mm). These differences were also significant within each age group. The older group had significantly greater axial thickness than the young group (older group 4.35 ± 0.26 mm, young group 3.70 ± 0.25 mm). Center refractive indices of diabetes and control groups were not significantly different. There were some statistically significant differences between the refractive index fitting parameters of young and older groups, but not between diabetes and control groups of the same age. Conclusions: Smaller lens diameters occurred in the diabetes groups than in the age-matched control groups. Differences in refractive index distribution between persons with and without diabetes are too small to have important effects on instruments measuring axial thickness.
Resumo:
Trioxalatocobaltates of bivalent metals KM2+[Co(C2O4)3]·x H2O, with M2+ = Ba, Sr, Ca and Pb, have been prepared, characterized and their thermal behaviour studied. The compounds decompose to yield potassium carbonate, bivalent metal carbonate or oxide and cobalt oxide as final products. The formation of the final products of decomposition is influenced by the surrounding atmosphere. Bivalent metal cobaltites of the types KM2+CoO3 and M2+CoO3—x are not identified among the final products of decomposition. The study brings out the importance of the decomposition mode of the precursor in producing the desired end products.
Resumo:
2,3-Dihydroxybenzoic acid has been shown to be oxidized via the 3-oxoadipate pathway in the leaves of Tecoma stans. The formation of 2-carboxy-cis,cis-muconic acid, a muconolactone, 3-oxoadipic acid and carbon dioxide during its metabolism has been demonstrated using an extract of Tecoma leaves. The first reaction of the pathway, viz., the conversion of 2,3-dihydroxybenzoate to 2-carboxy-cis,cis-muconic acid has been shown to be catalysed by an enzyme designated as 2,3-dihydroxybenzoate 2,3-oxygenase. The enzyme has been partially purified and a few of its properties studied. The enzyme is very labile with a half-life of 3--4 h. It is maximally active with 2,3-dihydroxybenzoate as the substrate and does not exhibit any activity with catechol, 4-methyl catechol, 3,4-dihydroxybenzoic acid, etc. However, 2,3-dihydroxy-p-toluate and 2,3-dihydroxy-p-cumate are also oxidized by the enzyme by about 38% and 28% respectively, compared to 2,3-dihydroxybenzoate. Sulfhydryl reagents inhibit the enzyme reaction and the inhibition can be prevented by preincubation of the enzyme with the substrate. Substrate also affords protection to the enzyme against thermal inactivation. Sulfhydryl compounds strongly inhibit the reaction and the inhibition cannot be prevented by preincubation of the enzyme with its substrates. Data on the effect of metal ions as well as metal chelating agents suggest that copper is the metal cofactor of the enzyme. Evidence is presented which suggests that iron may not be participating in the overall catalytic mechanism.
Resumo:
Titration calorimetry measurements of the binding of methyl alpha-D-mannopyranoside (Me alpha Man), D-mannopyranoside (Man), methyl alpha-D-glucopyranoside (Me alpha Glu), and D-glucopyranoside (Glu) to concanavalin A (Con A), pea lectin, and lentil lectin were performed at 281 and 292 K in 0.01 M dimethylglutaric acid-NaOH buffer (pH 6.9) containing 0.15 M NaCl and Mn+2 and Ca+2 ions. The site binding enthalpies, delta H, are the same at both temperatures and range from -28.4 +/- 0.9 (Me alpha Man) to -16.6 +/- 0.5 kJ mol-1 (Glu) for Con A, from -26.2 +/- 1.1 (Me alpha Man) to -12.8 +/- 0.4 kJ mol-1 (Me alpha Glu) for pea lectin, and from -16.6 +/- 0.7 (Me alpha Man) to -8.0 +/- 0.2 kJ mol-1 (Me alpha Glu) for lentil lectin. The site binding constants range from 17 +/- 1 x 10(3) M-1 (Me alpha Man to Con A at 281.2 K) to 230 +/- 20 M-1 (Glu to lentil lectin at 292.6 K) and exhibit high specificity for Con A where they are in the Me alpha Man:Man:Me alpha Glu:Glu ratio of 21:4:5:1, while the corresponding ratio is 5:2:1.5:1 for pea lectin and 4:2:2:1 for lentil lectin. The higher specificity for Con A indicates more interactions between the amino acid residues at the binding site and the carbohydrate ligand than for the pea and lentil lectin-carbohydrate complexes. The carbohydrate-lectin binding results exhibit enthalpy-entropy compensation in that delta Hb (kJ mol-1) = -1.67 +/- 0.06 x 10(4) + (1.30 +/- 0.12)T(K) delta Sb (J mol-1K-1). Differential scanning calorimetry measurements on the thermal denaturation of the lectins and their carbohydrate complexes show that the Con A tetramer dissociates into monomers, while the pea and lentil lectin dimers dissociate into two submonomer fragments. At the denaturation temperature, one carbohydrate binds to each monomer of Con A and the pea and lentil lectins. Complexation with the carbohydrate increases the denaturation temperature of the lectin and the magnitude of the increases yield binding constants in agreement with the determinations from titration calorimetry.
Resumo:
High temperature load controlled fatigue, hot tensile and accelerated creep properties of thermal barrier coated (TBC) Superni C263 alloy used as a candidate material in combustor liner of aero engines are highlighted in this paper. Acoustic emission technique has been utilised to characterise the ductile-brittle transition teperature the bond coat. Results revealed that the DBTT (ductile to brittle transition temperature) of this bond coat is around 923 K, which is in close proximity to the value reported for CoCrAlY type of bond coat. Finite element technique, used for analysing the equivalent stresses in the bond coat well within the elastic limit, revealed the highest order of equivalent stress at 1073 K as the bond coat is ductile above 923 K. The endurance limit in fatigue and the life of TBC coated composite under accelerated creep conditions are substantially higher than those of the substrate material. Fractographic features at high stresses under fatigue showed intergranular cleavage whereas those at low stresses were transgranular and ductile in nature. Delamination of the bond coat and spallation of the TBC at high stresses during fatigue was evident. Unlike in the case of fatigue, the mode of fracture in the substrate at very high stresses was transgranular whereas that at low stresses was intergranular in creep.
Resumo:
The problem of homogeneous solid propellant combustion instability is studied with a one-dimensional flame model, including the effects of gas-phase thermal inertia and nonlinearity. Computational results presented in this paper show nonlinear instabilities inherent in the equations, due to which periodic burning is found even under steady ambient conditions such as pressure. The stability boundary is obtained in terms of Denison-Baum parameters. It is found that inclusion of gas-phase thermal inertia stabilizes the combustion. Also, the effect of a distributed heat release in the gas phase, compared to the flame sheet model, is to destabilize the burning. Direct calculations for finite amplitude pressure disturbances show that two distinct resonant modes exist, the first one near the natural frequency as obtained from intrinsic instability analysis and a second mode occurring at a much higher driving frequency. It is found that er rn in the low frequency region, the response of the propellant is significantly affected by the specific type of gas-phase chemical heat-release model employed. Examination of frequency response function reveals that the role of gas-phase thermal inertia is to stabilize the burning near the first resonant mode. Calculations made for different amplitudes of driving pressure show that the mean burning rate decreases with increasing amplitude. Also, with an increase in the driving amplitude, higher harmonics are generated in the burning rate.
Resumo:
A simple and efficient two-step hybrid electrochemical-thermal route was developed for the synthesis of large quantity of ZnO nanoparticles using aqueous sodium bicarbonate electrolyte and sacrificial Zn anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were varied from 30 to 120 mmol and 0.05 to 1.5 A/dm(2). The electrochemically generated precursor was calcined for an hour at different range of temperature from 140 to 600 A degrees C. The calcined samples were characterized by XRD, SEM/EDX, TEM, TG-DTA, FT-IR, and UV-Vis spectral methods. Rietveld refinement of X-ray data indicates that the calcined compound exhibits hexagonal (Wurtzite) structure with space group of P63mc (No. 186). The crystallite sizes were in the range of 22-75 nm based on Debye-Scherrer equation. The TEM results reveal that the particle sizes were in the order of 30-40 nm. The blue shift was noticed in UV-Vis absorption spectra, the band gaps were found to be 5.40-5.11 eV. Scanning electron micrographs suggest that all the samples were randomly oriented granular morphology.
Resumo:
The development of high-quality tin monosulphide (SnS) layers is one of the crucial tasks in the fabrication of efficient SnS-based optoelectronic devices. Reduction of strain between film and the substrate by using an appropriate lattice-matched (LM) substrate is a new attempt for the growth of high-quality layers. In this view, the SnS films were deposited on LM Al substrate using the thermal evaporation technique with a low rate of evaporation. The as-grown SnS films were characterized using appropriate techniques and the obtained results are discussed by comparing them with the properties of SnS films grown on amorphous substrate under the same conditions. From structural analysis of the films, it is noticed that the SnS films deposited on amorphous substrate have crystallites that were oriented along different directions. However, the SnS crystallites grown on Al substrate exhibited epitaxial growth along the 101] direction. Photoluminescence (PL) and Raman studies reveal that the films grown on Al substrate have better optical properties than those of the films grown on amorphous substrates. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
A holographic optical element (HOE) based single-mode hybrid fiber optic interferometer for realizing the zero-order fringe is described. The HOE proposed and used integrates the actions of a beam combiner and a lens, and endows the interferometer with high tolerance for repositioning errors. The proposed method is simple and offers advantages such as the elimination of in situ processing for the hologram.
Resumo:
A general analysis of squeezing transformations for two-mode systems is given based on the four-dimensional real symplectic group Sp(4, R). Within the framework of the unitary (metaplectic) representation of this group, a distinction between compact photon-number-conserving and noncompact photon-number-nonconserving squeezing transformations is made. We exploit the U(2) invariant squeezing criterion to divide the set of all squeezing transformations into a two-parameter family of distinct equivalence classes with representative elements chosen for each class. Familiar two-mode squeezing transformations in the literature are recognized in our framework and seen to form a set of measure zero. Examples of squeezed coherent and thermal states are worked out. The need to extend the heterodyne detection scheme to encompass all of U(2) is emphasized, and known experimental situations where all U(2) elements can be reproduced are briefly described.
Resumo:
This paper presents the thermal vibration analysis of single-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and axial stress caused by the thermal effects is also considered. Nonlocal governing equation of motion for this graphene sheet system is derived from the principle of virtual displacements. The closed form solution for thermal-vibration frequencies of a simply supported rectangular nanoplate has been obtained by using the Navier's method of solution. Numerical results obtained by the present theory are compared with available solutions in the literature and the molecular dynamics results. The influences of the small scale coefficient, the room or low temperature, the high temperature, the half wave number and the aspect ratio of nanoplate on the natural frequencies are considered and discussed in detail. The thermal vibration analysis of single- and double-layer graphene sheets are considered for the analysis. The mode shapes of the respective graphene system are also captured in this work. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.
Resumo:
We report here, a finite difference thermal diffusion (FDTD) model for controlling the cross-section and the guiding nature of the buried channel waveguides fabricated on GeGaS bulk glasses using the direct laser writing technique. Optimization of the laser parameters for guiding at wavelength 1550 nm is done experimentally and compared with the theoretical values estimated by FDTD model. The mode field diameter (MFD) between 5.294 mu m and 24.706 mu m were attained by suitable selection of writing speed (1mm/s to 4 mm/s) and pulse energy (623 nJ to 806 nJ) of the laser at a fixed repletion rate of 100 kHz. Transition from single-mode to multi-mode waveguide is observed at pulse energy 806nJ as a consequence of heat accumulation. The thermal diffusion model fits well for single-mode waveguides with the exception of multi-mode waveguides.
Resumo:
Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires.