371 resultados para Mn2
Resumo:
Tetrahedrite compounds Cu12-xMnxSb4S13 (0 <= x <= 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I (4) over bar 3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn2+ at the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 +/- 0.1 x 10(-6) K-1 is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Theta(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 mu(B)/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.
Resumo:
Effect of MnO addition on microstructure and ionic transport properties of nanocrystalline cubic(c)-ZrO2 is reported. Monoclinic (m) ZrO2 powders with 10-30 mol% MnO powder are mechanically alloyed in a planetary ball mill at room temperature for 10 h and annealed at 550 degrees C for 6 h. In all compositions m-ZrO2 transforms completely to nanocrystalline c-ZrO2 phase and MnO is fully incorporated into c-ZrO2 lattice. Rietveld's refinement technique is employed for detailed microstructure analysis by analyzing XRD patterns. High resolution transmission electron microscopy (HRTEM) analysis confirms the complete formation of c-ZrO2 phase. Presence of stoichiometric Mn in c-ZrO2 powder is confirmed by Electron Probe Microscopy analysis. XPS analysis reveals that Mn is mostly in Mn2+ oxidation state. A correlation between lattice parameter and oxygen vacancy is established. A detailed ionic conductivity measurement in the 250 degrees-575 degrees C temperature range describes the effect of MnO on conductivity of c-ZrO2. The ionic conductivity (s) of 30 mol% MnO alloyed ZrO2 at 550 degrees C is 0.04 s cm(-1). Electrical relaxation studies are carried out by impedance and modulus spectroscopy. Relaxation frequency is found to increase with temperature and MnO mol fraction. Electrical characterization predicts that these compounds have potentials for use as solid oxide fuel cell electrolyte material. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Staphylococcus aureus is an opportunistic pathogen that rapidly acquires resistance to frontline antibiotics. The characterization of novel protein targets from this bacterium is thus an important step towards future therapeutic strategies. Here, the crystal structure of an amidohydrolase, SACOL0085, from S. aureus COL is described. SACOL0085 is a member of the M20D family of peptidases. Unlike other M20D peptidases, which are either monomers or dimers, SACOL0085 adopts a butterfly-shaped homotetrameric arrangement with extensive intersubunit interactions. Each subunit of SACOL0085 contains two Mn2+ ions at the active site. A conserved cysteine residue at the active site distinguishes M20D peptidases from other M20 family members. This cysteine, Cys103, serves as bidentate ligand coordinating both Mn2+ ions in SACOL0085.
Resumo:
10576525a) CAMPEPCKCAM-PEPCKPEPCKC4PEPCKG6PFBPPEPMn2+b)PEPCC3C4.O2- PSIILOXPSIIQPQc)UV-BUV-BO2NO2-d)13C80CO20.7~2.3l/L/CO2NOXSO2CO2CO24CO2e)DPPH.
Resumo:
In this work we perform for the first time a palaeoenvironmental and biostratigraphic analysis of the lower Miocene alluvial deposits of the Cenicero section (NW sector of the Ebro Basin; N Iberian Peninsula), based on the ostracod and micromammal assemblages. One of the main characteristics of this section is the unusual abundance on non-reworked ostracods present in the studied samples compared to other European sequences of similar age and sedimentary environment. This fact has allowed us to develop precise palaeoenvironmental reconstructions. The variations of the identified ostracod assemblages, defined by species such as Cyclocypris laevis, Ilyocypris bradyi, Ilyocypris gibba, Limnocythere sp. or Pseudocandona parallela, record the development of small, ephemeral and shallow ponds in a distal alluvial and/or floodplain environment. Towards the upper part of the section the ponds appear to be less ephemeral, being the aquatic systems more stable for ostracods development. Variations in the water temperature and salinity have been observed along the section, which are related to changes in the local pluviometric regime. On the other hand, the presence of micromammals in one of the studied samples has allowed the precise dating of this section. Thus, the presence of Armantomys daamsi dates the Cenicero section as Agenian (lower Miocene), local zone Y2 (MN2).
Resumo:
Esta Dissertao teve como objetivo,a sntese de hidrogis base de alginato e nanopartculas magnticas (maghemita) preparadas in situ. Os hidrogis foram preparados em diferentes concentraes de alginato de sdio (2 e 3% m/v), FeSO4 (0,3 e 0,5 mol L-1) e CaCl2 (0,1 e 0,3 mol L-1). As propriedades fsico-qumicas dos hidrogis foram analisadas e, posteriormente, foram avaliados quanto capacidade de remoo de ons Ni2+ e Mn2+ de solues aquosas. Para caracterizao das amostras foram utilizadas diversas tcnicas de anlises, tais como, anlise granulomtrica, microscopia ptica (OM), microscopia eletrnica de varredura (SEM), microscopia eletrnica de transmisso (TEM), magnetometria de amostra vibrante (VSM), espectroscopia na regio do infravermelho por transformada de Fourier (FTIR), difratometria de raios-X (XRD), espectroscopia Mssbauer, e anlise termogravimtrica (TGA). Foram preparados hidrogis com morfologia predominantemente esfrica e dimenses micromtricas (500 a 850 m), com tomos de Fe e Ca dispersos uniformemente em sua estrutura. Os hidrogis apresentaram boa resistncia trmica e comportamento superparamagntico. As amostras foram intumescidas em gua deionizada durante um intervalo de tempo a fim de avaliar o grau de intumescimento (Q) para determinar a amostra com a melhor resposta para posterior aplicao em soluo aquosa contendo ons metlicos (Ni2+ e Mn2+). Os resultados revelaram que a amostra cuja concentrao de 3% m/v de alginato de sdio, 0,3 mol L-1 de FeSO4 e 0,3 mol L-1 de CaCl2 obteve maior Q (50%). Em consequncia deste resultado, optou-se por utilizar estaamostra, na remoo de metais pesados presentes em solues aquosas e em efluentes industriais. Vrios parmetros,tais como: tempo de contato,pH, concentrao inicial do on e massa de hidrogel foram estudados.Os resultados, para efluente sinttico, revelaram que o tempo de equilbrio foi de 60 minutos; a capacidade de remoo dos metais melhora com o aumento de pH (3 a 9), sendo mxima em pH 7;quanto menor a concentrao inicial da soluo inica (50 a 500 mg L-1), maior a capacidade de remoo, 52% de Ni2+ e 49% de Mn2+ (concentrao inicial de 50 mg L-1). No efluente industrial, a remoo foi de 61% de Ni2+ e 57% de Mn2+(300 mg de hidrogel). Os resultados encontrados revelaram que os hidrogis magnticos produzidos base de alginato tm potencial uso no tratamento de efluentes industriais contaminados com metais pesados
Resumo:
BADHEC 1.2.1.8poly (A)+RNA 1.6070405.3 2. 3.pHpH9.5NADKm8.010-6M, Vmax0.143nmol/minKm1.8210-4MVmax0.182nmol/min0.1251MNaClKCl0.1251M 4.PCMBMersalylDTTLaCl3CeClMn2+Mo6+Mg2+ 5. 6.-poly (A)+RNA-80
Resumo:
, EDTA 1 391 KUg - 1 ,,1 2 5 mmolL - 1Ca2 + Mg2 + Mn2 + ,1 2 mmolL - 1Zn2 + Co2 + ,5 mmolL - 1Zn2 + Co2 + ,Cu2 + 1 2 5 mmolL - 1 , EDTA , EDTA
Resumo:
Zn2+,Co2+Mn2+.,Zn2+(6h),,2mg/LZn2+(72h).Co2+Mn2+.Co2+<1mg/LMn2+<2mg/L,6h,,Co2+Mn2+,
Resumo:
We investigate theoretically CdTe quantum dots containing a single Mn2+ impurity, including the sp-d exchange interaction between carriers and the magnetic ion and the short-range exchange interaction between electron and hole. We find anticrossing behaviors in the energy spectrum of the electron-hole (e-h) pair that arise from the interplay between exchange interactions and the magnetic field. In addition to the s-d exchange interaction, we find that other mechanisms inducing the anticrossings become important in the strong heavy hole-light hole (hh-lh) mixing regime. The transition strengths between the states with spin projection of Mn2+ ion S-z not equal -5/2 (S-z = -5/2) decrease (increase) with increasing magnetic fields due to the alignment of the Mn2+ spin. The spin splitting of the e-h pair states depends sensitively on the external magnetic and electric field, which reveals useful information about the spin orientation and position of the magnetic ion. Meanwhile, the manipulation of the position of the magnetic ion offers us a way to control the spin splitting of the carriers. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We investigate theoretically the electron-hole pair states in CdTe quantum dot (QD) containing a single Mn2+ ion by the magneto-optical spectrum tuned by the electric field. It is shown that the electric field does not only tune the spin splitting via the sp-d exchange interaction but also affect significantly the anticrossing behavior in the photoluminescence spectrum. This anticrossing is caused by the s-d exchange interaction and/or the hole mixing effect, which depends sensitively on the shape of the QD. (C) 2008 American Institute of Physics.
Resumo:
Based on a modified mean-field model, we calculate the Curie temperatures of Fe2+- and Co2+-doped diluted magnetic semiconductors (DMSs) and their dependence on the hole concentration. We find that the Curie temperatures increase with an increase in hole concentration and the relationship T(C)proportional to p(1/3) also approximately holds for Fe2+- and Co2+-doped systems with moderate hole concentration. For either low or high hole concentrations, however, the p(1/3) law is violated due to the anomalous magnetization of the Fe2+ and Co2+ ions, and the nonparabolic nature of the hole bands. Further, the values of T-C for Fe2+- and Co2+-doped DMSs are significantly higher than those for Mn2+-doped DMSs, due to the larger exchange interaction strength.
Resumo:
Using a solution-based chemical method, we have prepared ZnS nanocrystals doped with high concentration of Mn2+. The X-ray diffraction analysis confirmed a zinc blende structure. The average size was about 3 nm. Photoluminescence spectrum showed room temperature emission in the visible spectrum, which consisted of the defect-related emission and the T-4(1)-(6)A(1) emission of Mn2+ ions. Compared with the undoped sample, the luminescence of the ZnS:Mn sample is enhanced by more than an order of magnitude, which indicated that the Mn2+ ions can efficiently boost the luminescence of ZnS nanocrystals.
Resumo:
The PL spectra for the 10, 4. 5, 3. 5, 3, 1 nm sized ZnS:Mn2+ nanoparticles and corresponding bulk material under different pressures were investigated. The orange emission band originated from the T-4(1)-(6)A(1) transition of Mn2+ ions showed obvious red shift with the increasing of pressures. The pressure coefficients of Mn-related emissions measured from bulk, 10, 4. 5, 3.5 and 3 nm samples are -29.4 +/- 0.3, -30.1 +/- 0.3, -33.3 +/- 0.6, -34.6 +/- 0.8 and -39 +/- 1 meV/GPa, respectively. The absolute value of the pressure coefficient increases with the decrease of the size of particles. The size dependence of crystal field strength Dq and Racah parameter B accounts for the size behavior of the Mn-related emission in ZnS:Mn nanoparticles. The pressure behavior of Mn-related emission in the 1 nm sized sample is somewhat different from that of other nanoparticles. It may be due to smaller size of 1 nm sample and the special surface condition since ZnS nanoparticles are formed in the cavities of ziolite-Y for the 1 nm sample.
Resumo:
The pressure dependence of the photoluminescence from ZnS : Mn2+, ZnS : Cu2+, and ZnS : Eu2+ nanoparticles were investigated under hydrostatic pressure up to 6 GPa at room temperature. Both the orange emission from the T-4(1) - (6)A(1) transition of Mn2+ ions and the blue emission from the DA pair transition in the ZnS host were observed in the Mn-doped samples. The measured pressure coefficients are -34.3(8) meV/GPa for the Mn-related emission and -3(3) meV/GPa for the DA band, respectively. The emission corresponding to the 4f(6)5d(1) - 4f(7) transition of Eu2+ ions and the emission related to the transition from the conduction band of ZnS to the t(2) level of Cu2+ ions were observed in the Eu- and Cu-doped samples, respectively. The pressure coefficient of the Eu-related emission was found to be 24.1(5) meV/GPa, while that of the Cu-related emission is 63.2(9) meV/GPa. The size dependence of the pressure coefficients for the Mn-related emission was also investigated. The Mn emission shifts to lower energies with increasing pressure and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS : Mn2+ nanoparticles than in bulk. Moreover, the absolute pressure coefficient increases with the decrease of the particle size. The pressure coefficients calculated based on the crystal field theory are in agreement with the experimental results. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.