883 resultados para Mixed integer models
Resumo:
Permeation of gases through single surfactant stabilized aqueous films has previously been studied in view of the potentiality of foam to separate gaseous mixtures. The earlier analysis assumed that the gas phase was well mixed and that the mass-transfer process was completely controlled by the liquid film. Permeabilities evaluated from single film data based on such analysis failed to predict the mass-transfer data obtained on permeation through two films. It is shown that the neglect of gas-phase resistance and the effect of film movement is the reason for the failure of the well-mixed gas models. An exact analysis of diffusion through two films is presented. It successfully predicts the experimental data on two films based on parameters evaluated from single film data.
Resumo:
The objectives of this study were to investigate the stand structure and succession dynamics in Scots pine (Pinus sylvestris L.) stands on pristine peatlands and in Scots pine and Norway spruce (Picea abies (L.) Karst.) dominated stands on drained peatlands. Furthermore, my focus was on characterising how the inherent and environmental factors and the intermediate thinnings modify the stand structure and succession. For pristine peatlands, the study was based on inventorial stand data, while for drained peatlands, longitudinal data from repeatedly measured stands were utilised. The studied sites covered the most common peatland site types in Finland. They were classified into two categories according to the ecohydrological properties related to microsite variation and nutrient levels within sites. Tree DBH and age distributions in relation to climate and site type were used to study the stand dynamics on pristine sites. On drained sites, the Weibull function was used to parameterise the DBH distributions and mixed linear models were constructed to characterise the impacts of different ecological factors on stand dynamics. On pristine peatlands, both climate and the ecohydrology of the site proved to be crucial factors determining the stand structure and its dynamics. Irrespective of the vegetation succession, enhanced site productivity and increased stand stocking they significantly affected the stand dynamics also on drained sites. On the most stocked sites on pristine peatlands the inter-tree competition seemed to also be a significant factor modifying stand dynamics. Tree age and size diversity increased with stand age, but levelled out in the long term. After drainage, the stand structural unevenness increased due to the regeneration and/or ingrowth of the trees. This increase was more pronounced on sparsely forested composite sites than on more fully stocked genuine forested sites in Scots pine stands, which further undergo the formation of birch and spruce undergrowth beneath the overstory as succession proceeds. At 20-30 years after drainage the structural heterogeneity started to decrease, indicating increased inter-tree competition, which increased the mortality of suppressed trees within stand. Peatland stands are more dynamic than anticipated and are generally not characterized by a balanced, self-perpetuating structure. On pristine sites, various successional pathways are possible, whereas on drained sites the succession has more uniform trend. Typically, stand succession proceeds without any distinct developmental stages on pristine peatlands, whereas on drained peatlands, at least three distinct stages could be identified. Thinnings had only little impact on the stand succession. The new information on stand dynamics may be utilised, e.g. in forest management planning to facilitate the allocation of the growth resources to the desired crop component by appropriate silvicultural treatments, as well as assist in assessing the effects of the climate change on the forested boreal peatlands.
Resumo:
Eutrophication of the Baltic Sea is a serious problem. This thesis estimates the benefit to Finns from reduced eutrophication in the Gulf of Finland, the most eutrophied part of the Baltic Sea, by applying the choice experiment method, which belongs to the family of stated preference methods. Because stated preference methods have been subject to criticism, e.g., due to their hypothetical survey context, this thesis contributes to the discussion by studying two anomalies that may lead to biased welfare estimates: respondent uncertainty and preference discontinuity. The former refers to the difficulty of stating one s preferences for an environmental good in a hypothetical context. The latter implies a departure from the continuity assumption of conventional consumer theory, which forms the basis for the method and the analysis. In the three essays of the thesis, discrete choice data are analyzed with the multinomial logit and mixed logit models. On average, Finns are willing to contribute to the water quality improvement. The probability for willingness increases with residential or recreational contact with the gulf, higher than average income, younger than average age, and the absence of dependent children in the household. On average, for Finns the relatively most important characteristic of water quality is water clarity followed by the desire for fewer occurrences of blue-green algae. For future nutrient reduction scenarios, the annual mean household willingness to pay estimates range from 271 to 448 and the aggregate welfare estimates for Finns range from 28 billion to 54 billion euros, depending on the model and the intensity of the reduction. Out of the respondents (N=726), 72.1% state in a follow-up question that they are either Certain or Quite certain about their answer when choosing the preferred alternative in the experiment. Based on the analysis of other follow-up questions and another sample (N=307), 10.4% of the respondents are identified as potentially having discontinuous preferences. In relation to both anomalies, the respondent- and questionnaire-specific variables are found among the underlying causes and a departure from standard analysis may improve the model fit and the efficiency of estimates, depending on the chosen modeling approach. The introduction of uncertainty about the future state of the Gulf increases the acceptance of the valuation scenario which may indicate an increased credibility of a proposed scenario. In conclusion, modeling preference heterogeneity is an essential part of the analysis of discrete choice data. The results regarding uncertainty in stating one s preferences and non-standard choice behavior are promising: accounting for these anomalies in the analysis may improve the precision of the estimates of benefit from reduced eutrophication in the Gulf of Finland.
Resumo:
Key message Eucalyptus pellita demonstrated good growth and wood quality traits in this study, with young plantation grown timber being suitable for both solid and pulp wood products. All traits examined were under moderate levels of genetic control with little genotype by environment interaction when grown on two contrasting sites in Vietnam. Context Eucalyptus pellita currently has a significant role in reforestation in the tropics. Research to support expanded of use of this species is needed: particularly, research to better understand the genetic control of key traits will facilitate the development of genetically improved planting stock. Aims This study aimed to provide estimates of the heritability of diameter at breast height over bark, wood basic density, Kraft pulp yield, modulus of elasticity and microfibril angle, and the genetic correlations among these traits, and understand the importance of genotype by environment interactions in Vietnam. Methods Data for diameter and wood properties were collected from two 10-year-old, open-pollinated progeny trials of E. pellita in Vietnam that evaluated 104 families from six native range and three orchard sources. Wood properties were estimated from wood samples using near-infrared (NIR) spectroscopy. Data were analysed using mixed linear models to estimate genetic parameters (heritability, proportion of variance between seed sources and genetic correlations). Results Variation among the nine sources was small compared to additive variance. Narrow-sense heritability and genetic correlation estimates indicated that simultaneous improvements in most traits could be achieved from selection among and within families as the genetic correlations among traits were either favourable or close to zero. Type B genetic correlations approached one for all traits suggesting that genotype by environment interactions were of little importance. These results support a breeding strategy utilizing a single breeding population advanced by selecting the best individuals across all seed sources. Conclusion Both growth and wood properties have been evaluated. Multi-trait selection for growth and wood property traits will lead to more productive populations of E. pellita both with improved productivity and improved timber and pulp properties.
Resumo:
The sugarcane transport system plays a critical role in the overall performance of Australia’s sugarcane industry. An inefficient sugarcane transport system interrupts the raw sugarcane harvesting process, delays the delivery of sugarcane to the mill, deteriorates the sugar quality, increases the usage of empty bins, and leads to the additional sugarcane production costs. Due to these negative effects, there is an urgent need for an efficient sugarcane transport schedule that should be developed by the rail schedulers. In this study, a multi-objective model using mixed integer programming (MIP) is developed to produce an industry-oriented scheduling optimiser for sugarcane rail transport system. The exact MIP solver (IBM ILOG-CPLEX) is applied to minimise the makespan and the total operating time as multi-objective functions. Moreover, the so-called Siding neighbourhood search (SNS) algorithm is developed and integrated with Sidings Satisfaction Priorities (SSP) and Rail Conflict Elimination (RCE) algorithms to solve the problem in a more efficient way. In implementation, the sugarcane transport system of Kalamia Sugar Mill that is a coastal locality about 1050 km northwest of Brisbane city is investigated as a real case study. Computational experiments indicate that high-quality solutions are obtainable in industry-scale applications.
Resumo:
This paper proposes a new multi-stage mine production timetabling (MMPT) model to optimise open-pit mine production operations including drilling, blasting and excavating under real-time mining constraints. The MMPT problem is formulated as a mixed integer programming model and can be optimally solved for small-size MMPT instances by IBM ILOG-CPLEX. Due to NP-hardness, an improved shifting-bottleneck-procedure algorithm based on the extended disjunctive graph is developed to solve large-size MMPT instances in an effective and efficient way. Extensive computational experiments are presented to validate the proposed algorithm that is able to efficiently obtain the near-optimal operational timetable of mining equipment units. The advantages are indicated by sensitivity analysis under various real-life scenarios. The proposed MMPT methodology is promising to be implemented as a tool for mining industry because it is straightforwardly modelled as a standard scheduling model, efficiently solved by the heuristic algorithm, and flexibly expanded by adopting additional industrial constraints.
Resumo:
This thesis investigates factors that impact the energy efficiency of a mining operation. An innovative mathematical framework and solution approach are developed to model, solve and analyse an open-pit coal mine. A case study in South East Queensland is investigated to validate the approach and explore the opportunities for using it to aid long, medium and short term decision makers.
Resumo:
The optimal design of a multiproduct batch chemical plant is formulated as a multiobjective optimization problem, and the resulting constrained mixed-integer nonlinear program (MINLP) is solved by the nondominated sorting genetic algorithm approach (NSGA-II). By putting bounds on the objective function values, the constrained MINLP problem can be solved efficiently by NSGA-II to generate a set of feasible nondominated solutions in the range desired by the decision-maker in a single run of the algorithm. The evolution of the entire set of nondominated solutions helps the decision-maker to make a better choice of the appropriate design from among several alternatives. The large set of solutions also provides a rich source of excellent initial guesses for solution of the same problem by alternative approaches to achieve any specific target for the objective functions
Resumo:
his paper studies the problem of designing a logical topology over a wavelength-routed all-optical network (AON) physical topology, The physical topology consists of the nodes and fiber links in the network, On an AON physical topology, we can set up lightpaths between pairs of nodes, where a lightpath represents a direct optical connection without any intermediate electronics, The set of lightpaths along with the nodes constitutes the logical topology, For a given network physical topology and traffic pattern (relative traffic distribution among the source-destination pairs), our objective is to design the logical topology and the routing algorithm on that topology so as to minimize the network congestion while constraining the average delay seen by a source-destination pair and the amount of processing required at the nodes (degree of the logical topology), We will see that ignoring the delay constraints can result in fairly convoluted logical topologies with very long delays, On the other hand, in all our examples, imposing it results in a minimal increase in congestion, While the number of wavelengths required to imbed the resulting logical topology on the physical all optical topology is also a constraint in general, we find that in many cases of interest this number can be quite small, We formulate the combined logical topology design and routing problem described above (ignoring the constraint on the number of available wavelengths) as a mixed integer linear programming problem which we then solve for a number of cases of a six-node network, Since this programming problem is computationally intractable for larger networks, we split it into two subproblems: logical topology design, which is computationally hard and will probably require heuristic algorithms, and routing, which can be solved by a linear program, We then compare the performance of several heuristic topology design algorithms (that do take wavelength assignment constraints into account) against that of randomly generated topologies, as well as lower bounds derived in the paper.
Resumo:
Electronic exchanges are double-sided marketplaces that allow multiple buyers to trade with multiple sellers, with aggregation of demand and supply across the bids to maximize the revenue in the market. Two important issues in the design of exchanges are (1) trade determination (determining the number of goods traded between any buyer-seller pair) and (2) pricing. In this paper we address the trade determination issue for one-shot, multi-attribute exchanges that trade multiple units of the same good. The bids are configurable with separable additive price functions over the attributes and each function is continuous and piecewise linear. We model trade determination as mixed integer programming problems for different possible bid structures and show that even in two-attribute exchanges, trade determination is NP-hard for certain bid structures. We also make some observations on the pricing issues that are closely related to the mixed integer formulations.
Resumo:
Mangrove forests in meso-tidal areas are completely drained during low tides, forming only temporary habitats for fish. We hypothesised that in such temporary habitats, where stranding risks are high, distance from tidal creeks that provided access to inundated areas during receding tides would be the primary determinant of fish distribution. Factors such as depth, root density and shade were hypothesised to have secondary effects. We tested these hypotheses in a tidally drained mangrove patch in the Andaman Islands, India. Using stake nets, we measured fish abundance and species richness relative to distance from creeks, root density/m(2), shade, water depth and size (total length) of fish. We also predicted that larger fish (including potential predators) would be closer to creeks, as they faced a greater chance of mortality if stranded. Thus we conducted tethering trials to examine if predation would be greater close to the creeks. Generalised linear mixed effects models showed that fish abundance was negatively influenced by increasing creek distance interacting with fish size and positively influenced by depth. Quantile regression analysis showed that species richness was limited by increasing creek distance. Proportion of predation was greatest close to the creeks (0-25 m) and declined with increasing distance. Abundance was also low very close to the creeks, suggesting that close to the creeks predation pressure may be an important determinant of fish abundance. The overall pattern however indicates that access to permanently inundated areas, may be an important determinant of fish distribution in tidally drained mangrove forests.
Resumo:
In metropolitan cities, public transportation service plays a vital role in mobility of people, and it has to introduce new routes more frequently due to the fast development of the city in terms of population growth and city size. Whenever there is introduction of new route or increase in frequency of buses, the nonrevenue kilometers covered by the buses increases as depot and route starting/ending points are at different places. This non-revenue kilometers or dead kilometers depends on the distance between depot and route starting point/ending point. The dead kilometers not only results in revenue loss but also results in an increase in the operating cost because of the extra kilometers covered by buses. Reduction of dead kilometers is necessary for the economic growth of the public transportation system. Therefore, in this study, the attention is focused on minimizing dead kilometers by optimizing allocation of buses to depots depending upon the shortest distance between depot and route starting/ending points. We consider also depot capacity and time period of operation during allocation of buses to ensure parking safety and proper maintenance of buses. Mathematical model is developed considering the aforementioned parameters, which is a mixed integer program, and applied to Bangalore Metropolitan Transport Corporation (BMTC) routes operating presently in order to obtain optimal bus allocation to depots. Database for dead kilometers of depots in BMTC for all the schedules are generated using the Form-4 (trip sheet) of each schedule to analyze depot-wise and division-wise dead kilometers. This study also suggests alternative locations where depots can be located to reduce dead kilometers. Copyright (C) 2015 John Wiley & Sons, Ltd.
Resumo:
Cyber-physical systems integrate computation, networking, and physical processes. Substantial research challenges exist in the design and verification of such large-scale, distributed sensing, ac- tuation, and control systems. Rapidly improving technology and recent advances in control theory, networked systems, and computer science give us the opportunity to drastically improve our approach to integrated flow of information and cooperative behavior. Current systems rely on text-based spec- ifications and manual design. Using new technology advances, we can create easier, more efficient, and cheaper ways of developing these control systems. This thesis will focus on design considera- tions for system topologies, ways to formally and automatically specify requirements, and methods to synthesize reactive control protocols, all within the context of an aircraft electric power system as a representative application area.
This thesis consists of three complementary parts: synthesis, specification, and design. The first section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec- tric power system. This approach incorporates methodologies from computer science and control. The resulting controllers are correct by construction with respect to system requirements, which are formulated using the specification language of linear temporal logic (LTL). The second section addresses how to formally specify requirements and introduces a domain-specific language for electric power systems. A software tool automatically converts high-level requirements into LTL and synthesizes a controller.
The final sections focus on design space exploration. A design methodology is proposed that uses mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize controllers. The discrete-time control logic is then verified in real-time by two methods: hardware and simulation. Finally, the problem of partial observability and dynamic state estimation is ex- plored. Given a set placement of sensors on an electric power system, measurements from these sensors can be used in conjunction with control logic to infer the state of the system.
Resumo:
This thesis is motivated by safety-critical applications involving autonomous air, ground, and space vehicles carrying out complex tasks in uncertain and adversarial environments. We use temporal logic as a language to formally specify complex tasks and system properties. Temporal logic specifications generalize the classical notions of stability and reachability that are studied in the control and hybrid systems communities. Given a system model and a formal task specification, the goal is to automatically synthesize a control policy for the system that ensures that the system satisfies the specification. This thesis presents novel control policy synthesis algorithms for optimal and robust control of dynamical systems with temporal logic specifications. Furthermore, it introduces algorithms that are efficient and extend to high-dimensional dynamical systems.
The first contribution of this thesis is the generalization of a classical linear temporal logic (LTL) control synthesis approach to optimal and robust control. We show how we can extend automata-based synthesis techniques for discrete abstractions of dynamical systems to create optimal and robust controllers that are guaranteed to satisfy an LTL specification. Such optimal and robust controllers can be computed at little extra computational cost compared to computing a feasible controller.
The second contribution of this thesis addresses the scalability of control synthesis with LTL specifications. A major limitation of the standard automaton-based approach for control with LTL specifications is that the automaton might be doubly-exponential in the size of the LTL specification. We introduce a fragment of LTL for which one can compute feasible control policies in time polynomial in the size of the system and specification. Additionally, we show how to compute optimal control policies for a variety of cost functions, and identify interesting cases when this can be done in polynomial time. These techniques are particularly relevant for online control, as one can guarantee that a feasible solution can be found quickly, and then iteratively improve on the quality as time permits.
The final contribution of this thesis is a set of algorithms for computing feasible trajectories for high-dimensional, nonlinear systems with LTL specifications. These algorithms avoid a potentially computationally-expensive process of computing a discrete abstraction, and instead compute directly on the system's continuous state space. The first method uses an automaton representing the specification to directly encode a series of constrained-reachability subproblems, which can be solved in a modular fashion by using standard techniques. The second method encodes an LTL formula as mixed-integer linear programming constraints on the dynamical system. We demonstrate these approaches with numerical experiments on temporal logic motion planning problems with high-dimensional (10+ states) continuous systems.
Resumo:
In this work, the author presents a method called Convex Model Predictive Control (CMPC) to control systems whose states are elements of the rotation matrices SO(n) for n = 2, 3. This is done without charts or any local linearization, and instead is performed by operating over the orbitope of rotation matrices. This results in a novel model predictive control (MPC) scheme without the drawbacks associated with conventional linearization techniques such as slow computation time and local minima. Of particular emphasis is the application to aeronautical and vehicular systems, wherein the method removes many of the trigonometric terms associated with these systems’ state space equations. Furthermore, the method is shown to be compatible with many existing variants of MPC, including obstacle avoidance via Mixed Integer Linear Programming (MILP).